IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v158y2015icp288-296.html
   My bibliography  Save this article

Assessment of a newly implemented irrigated area (Lerma Basin, Spain) over a 10-year period. II: Salts and nitrate exported

Author

Listed:
  • Merchán, D.
  • Causapé, J.
  • Abrahão, R.
  • García-Garizábal, I.

Abstract

Irrigated agriculture impacts the quality of water bodies receiving irrigation return flows. The leaching of salts and nitrate from Lerma Basin (7.38km2), a newly-implemented pressurized irrigated area in the Ebro Basin (Spain), was assessed in this study for the hydrological years 2004–2013, covering years before (2004–2005), during (2006–2008) and after (2009–2013) the implementation of irrigation. The concentration of salts and nitrate were measured for all the components of the water balance and the amounts of these pollutants coming from the irrigated surface (352ha) were estimated. Besides, salt and nitrate contamination indices were computed. Under unirrigated conditions, the studied area exported 1.89Mgha−1year−1 and 11.4kgha−1year−1 of salts and nitrate-nitrogen, respectively. These amounts increased to 3.51Mgha−1year−1 for salts and 30.8kgha−1year−1 for nitrate-nitrogen after the implementation of irrigation. Salt and nitrate contamination indices (SCI and NCI, respectively) increased by a factor of three from unirrigated to irrigated conditions, reaching values of 0.96[Mgha−1year−1]/[dSm−1] and 0.12, respectively. Despite these values being well under the threshold considered for more sustainable irrigated areas (SCI<2.0[Mgha−1year−1]/[dSm−1] and NCI<0.2), it would be advisable to improve irrigation management to increase water use and decrease leaching. Complementary measures such as adjusting fertilization rates to temporal crop necessities or the use of catch crops may prove to be useful.

Suggested Citation

  • Merchán, D. & Causapé, J. & Abrahão, R. & García-Garizábal, I., 2015. "Assessment of a newly implemented irrigated area (Lerma Basin, Spain) over a 10-year period. II: Salts and nitrate exported," Agricultural Water Management, Elsevier, vol. 158(C), pages 288-296.
  • Handle: RePEc:eee:agiwat:v:158:y:2015:i:c:p:288-296
    DOI: 10.1016/j.agwat.2015.04.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377415001444
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2015.04.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Castellanos, M.T. & Tarquis, A.M. & Ribas, F. & Cabello, M.J. & Arce, A. & Cartagena, M.C., 2013. "Nitrogen fertigation: An integrated agronomic and environmental study," Agricultural Water Management, Elsevier, vol. 120(C), pages 46-55.
    2. Wang, Ruoshui & Kang, Yaohu & Wan, Shuqin & Hu, Wei & Liu, Shiping & Jiang, Shufang & Liu, Shuhui, 2012. "Influence of different amounts of irrigation water on salt leaching and cotton growth under drip irrigation in an arid and saline area," Agricultural Water Management, Elsevier, vol. 110(C), pages 109-117.
    3. Casalí, J. & Gastesi, R. & Álvarez-Mozos, J. & De Santisteban, L.M. & Lersundi, J. Del Valle de & Giménez, R. & Larrañaga, A. & Goñi, M. & Agirre, U. & Campo, M.A. & López, J.J. & Donézar, M., 2008. "Runoff, erosion, and water quality of agricultural watersheds in central Navarre (Spain)," Agricultural Water Management, Elsevier, vol. 95(10), pages 1111-1128, October.
    4. Thayalakumaran, Thabo & Bristow, Keith L. & Charlesworth, Philip B. & Fass, Thorsten, 2008. "Geochemical conditions in groundwater systems: Implications for the attenuation of agricultural nitrate," Agricultural Water Management, Elsevier, vol. 95(2), pages 103-115, February.
    5. Casalí, J. & Giménez, R. & Díez, J. & Álvarez-Mozos, J. & Del Valle de Lersundi, J. & Goñi, M. & Campo, M.A. & Chahor, Y. & Gastesi, R. & López, J., 2010. "Sediment production and water quality of watersheds with contrasting land use in Navarre (Spain)," Agricultural Water Management, Elsevier, vol. 97(10), pages 1683-1694, October.
    6. Stigter, T.Y. & Carvalho Dill, A.M.M. & Ribeiro, L. & Reis, E., 2006. "Impact of the shift from groundwater to surface water irrigation on aquifer dynamics and hydrochemistry in a semi-arid region in the south of Portugal," Agricultural Water Management, Elsevier, vol. 85(1-2), pages 121-132, September.
    7. He, Jianqiang & Dukes, Michael D. & Hochmuth, George J. & Jones, James W. & Graham, Wendy D., 2012. "Identifying irrigation and nitrogen best management practices for sweet corn production on sandy soils using CERES-Maize model," Agricultural Water Management, Elsevier, vol. 109(C), pages 61-70.
    8. Tedeschi, A. & Beltran, A. & Aragues, R., 2001. "Irrigation management and hydrosalinity balance in a semi-arid area of the middle Ebro river basin (Spain)," Agricultural Water Management, Elsevier, vol. 49(1), pages 31-50, July.
    9. Letey, J. & Hoffman, G.J. & Hopmans, J.W. & Grattan, S.R. & Suarez, D. & Corwin, D.L. & Oster, J.D. & Wu, L. & Amrhein, C., 2011. "Evaluation of soil salinity leaching requirement guidelines," Agricultural Water Management, Elsevier, vol. 98(4), pages 502-506, February.
    10. Thayalakumaran, T. & Bethune, M.G. & McMahon, T.A., 2007. "Achieving a salt balance--Should it be a management objective?," Agricultural Water Management, Elsevier, vol. 92(1-2), pages 1-12, August.
    11. Arbat, G. & Roselló, A. & Domingo Olivé, F. & Puig-Bargués, J. & González Llinàs, E. & Duran-Ros, M. & Pujol, J. & Ramírez de Cartagena, F., 2013. "Soil water and nitrate distribution under drip irrigated corn receiving pig slurry," Agricultural Water Management, Elsevier, vol. 120(C), pages 11-22.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Merchán, D. & Casalí, J. & Del Valle de Lersundi, J. & Campo-Bescós, M.A. & Giménez, R. & Preciado, B. & Lafarga, A., 2018. "Runoff, nutrients, sediment and salt yields in an irrigated watershed in southern Navarre (Spain)," Agricultural Water Management, Elsevier, vol. 195(C), pages 120-132.
    2. Abrahao, R. & Causapé, J. & García-Garizábal, I. & Merchán, D., 2011. "Implementing irrigation: Salt and nitrate exported from the Lerma basin (Spain)," Agricultural Water Management, Elsevier, vol. 102(1), pages 105-112.
    3. Giménez, R. & Casalí, J. & Grande, I. & Díez, J. & Campo, M.A. & Álvarez-Mozos, J. & Goñi, M., 2012. "Factors controlling sediment export in a small agricultural watershed in Navarre (Spain)," Agricultural Water Management, Elsevier, vol. 110(C), pages 1-8.
    4. Jiménez-Aguirre, M.T. & Isidoro, D., 2018. "Hydrosaline Balance in and Nitrogen Loads from an irrigation district before and after modernization," Agricultural Water Management, Elsevier, vol. 208(C), pages 163-175.
    5. Jiang, Donglin & Ao, Chang & Bailey, Ryan T. & Zeng, Wenzhi & Huang, Jiesheng, 2022. "Simulation of water and salt transport in the Kaidu River Irrigation District using the modified SWAT-Salt," Agricultural Water Management, Elsevier, vol. 272(C).
    6. Chahor, Y. & Casalí, J. & Giménez, R. & Bingner, R.L. & Campo, M.A. & Goñi, M., 2014. "Evaluation of the AnnAGNPS model for predicting runoff and sediment yield in a small Mediterranean agricultural watershed in Navarre (Spain)," Agricultural Water Management, Elsevier, vol. 134(C), pages 24-37.
    7. Duarte, A.C. & Mateos, L., 2022. "How changes in cropping intensity affect water usage in an irrigated Mediterranean catchment," Agricultural Water Management, Elsevier, vol. 260(C).
    8. Gill, Bruce C. & Terry, Alister D., 2016. "‘Keeping salt on the farm’—Evaluation of an on-farm salinity management system in the Shepparton irrigation region of South-East Australia," Agricultural Water Management, Elsevier, vol. 164(P2), pages 291-303.
    9. Song, Changji & Song, Jingru & Wu, Qiang & Shen, Xiaojun & Hu, Yawei & Hu, Caihong & Li, Wenhao & Wang, Zhenhua, 2023. "Effects of applying river sediment with irrigation water on salinity leaching during wheat-maize rotation in the Yellow River Delta," Agricultural Water Management, Elsevier, vol. 276(C).
    10. El-Kady, Amira F.Y. & Borham, Taha I., 2020. "Sustainable cultivation under saline irrigation water: Alleviating salinity stress using different management treatments on Terminalia arjuna (Roxb.) Wight & Arn," Agricultural Water Management, Elsevier, vol. 229(C).
    11. Wichelns, Dennis & Qadir, Manzoor, 2015. "Achieving sustainable irrigation requires effective management of salts, soil salinity, and shallow groundwater," Agricultural Water Management, Elsevier, vol. 157(C), pages 31-38.
    12. Jeremy Dominic & Ahmad Aris & Wan Sulaiman, 2015. "Factors Controlling the Suspended Sediment Yield During Rainfall Events of Dry and Wet Weather Conditions in A Tropical Urban Catchment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(12), pages 4519-4538, September.
    13. Malik, Wafa & Isla, Ramon & Dechmi, Farida, 2019. "DSSAT-CERES-maize modelling to improve irrigation and nitrogen management practices under Mediterranean conditions," Agricultural Water Management, Elsevier, vol. 213(C), pages 298-308.
    14. Barros, R. & Isidoro, D. & Aragüés, R., 2011. "Long-term water balances in La Violada irrigation district (Spain): I. Sequential assessment and minimization of closing errors," Agricultural Water Management, Elsevier, vol. 102(1), pages 35-45.
    15. Causape, J. & Quilez, D. & Aragues, R., 2004. "Assessment of irrigation and environmental quality at the hydrological basin level: I. Irrigation quality," Agricultural Water Management, Elsevier, vol. 70(3), pages 195-209, December.
    16. Rosa, R.D. & Ramos, T.B. & Pereira, L.S., 2016. "The dual Kc approach to assess maize and sweet sorghum transpiration and soil evaporation under saline conditions: Application of the SIMDualKc model," Agricultural Water Management, Elsevier, vol. 177(C), pages 77-94.
    17. Boongaling, Cheamson Garret K. & Faustino-Eslava, Decibel V. & Lansigan, Felino P., 2018. "Modeling land use change impacts on hydrology and the use of landscape metrics as tools for watershed management: The case of an ungauged catchment in the Philippines," Land Use Policy, Elsevier, vol. 72(C), pages 116-128.
    18. Tesfamariam, Eyob H. & Annandale, John G. & Steyn, Joachim M. & Stirzaker, Richard J. & Mbakwe, Ikenna, 2015. "Use of the SWB-Sci model for nitrogen management in sludge-amended land," Agricultural Water Management, Elsevier, vol. 152(C), pages 262-276.
    19. Holland, Jonathan E. & Luck, Gary W. & Max Finlayson, C., 2015. "Threats to food production and water quality in the Murray–Darling Basin of Australia," Ecosystem Services, Elsevier, vol. 12(C), pages 55-70.
    20. Litskas, V.D. & Aschonitis, V.G. & Lekakis, E.H. & Antonopoulos, V.Z., 2014. "Effects of land use and irrigation practices on Ca, Mg, K, Na loads in rice-based agricultural systems," Agricultural Water Management, Elsevier, vol. 132(C), pages 30-36.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:158:y:2015:i:c:p:288-296. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.