IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i7p4074-d782775.html
   My bibliography  Save this article

Energy Refurbishment of Serbian School Building Stock—A Typology Tool Methodology Development

Author

Listed:
  • Ljiljana Đukanović

    (University of Belgrade—Faculty of Architecture, 11000 Belgrade, Serbia)

  • Dušan Ignjatović

    (University of Belgrade—Faculty of Architecture, 11000 Belgrade, Serbia)

  • Nataša Ćuković Ignjatović

    (University of Belgrade—Faculty of Architecture, 11000 Belgrade, Serbia)

  • Aleksandar Rajčić

    (University of Belgrade—Faculty of Architecture, 11000 Belgrade, Serbia)

  • Nevena Lukić

    (University of Belgrade—Faculty of Architecture, 11000 Belgrade, Serbia)

  • Bojana Zeković

    (University of Belgrade—Faculty of Architecture, 11000 Belgrade, Serbia)

Abstract

Energy refurbishment of school buildings is a priority regarding both energy consumption in buildings and improving comfort conditions for sensitive young occupants. During 2016–18, a group of teachers and associates from the Faculty of Architecture, Mechanical Engineering, and Electrical Engineering from the University in Belgrade participated in the project “Energy efficiency in public buildings” in cooperation with GIZ (Deutsche Gesellschaft für Internationale Zusammenarbeit), University of Belgrade, Faculty of Architecture and Ministry of Mining and Energy of the Republic of Serbia. During 2016 and 2017, a comprehensive survey and database of public buildings were conducted by the local community. The focus of the research was the facilities of children’s institutions, and detailed data were collected to determine the current building stock conditions, energy consumption, and possible improvements. This paper presents the methodology of the project based on defining the typology of buildings, determining the representatives of the characteristic periods of construction, and analyzing their energy performance. Five possible scenarios were considered: designed condition, existing state, and three levels of a building improvement. The main goal of this project was to ascertain the entire fund for school buildings, indicate the potential for energy savings of this type of public building at the national level, and use this as a starting point for developing strategic decisions and further energy efficiency policies. This paper presents the complete results of the research on school buildings in Serbia, their energy performance, and possible energy savings. Key findings show that a great majority of schools are in a poor state in terms of their energy efficiency, but at the same time, there is a large potential for improvement of building envelope, HVAC, and lighting systems, which can cut the current energy need for heating to up to 80%.

Suggested Citation

  • Ljiljana Đukanović & Dušan Ignjatović & Nataša Ćuković Ignjatović & Aleksandar Rajčić & Nevena Lukić & Bojana Zeković, 2022. "Energy Refurbishment of Serbian School Building Stock—A Typology Tool Methodology Development," Sustainability, MDPI, vol. 14(7), pages 1-20, March.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:7:p:4074-:d:782775
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/7/4074/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/7/4074/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Carla Balocco & Alessandro Colaianni, 2018. "Assessment of Energy Sustainable Operations on a Historical Building. The Dante Alighieri High School in Florence," Sustainability, MDPI, vol. 10(6), pages 1-24, June.
    2. Turanjanin, Valentina & Vučićević, Biljana & Jovanović, Marina & Mirkov, Nikola & Lazović, Ivan, 2014. "Indoor CO2 measurements in Serbian schools and ventilation rate calculation," Energy, Elsevier, vol. 77(C), pages 290-296.
    3. Dušan Ignjatović & Zeković Bojana & Nataša Ćuković Ignjatović & Ljiljana Đukanović & Ana Radivojević & Aleksandar Rajčić, 2021. "Methodology for Residential Building Stock Refurbishment Planning—Development of Local Building Typologies," Sustainability, MDPI, vol. 13(8), pages 1-19, April.
    4. Lizana, Jesus & Serrano-Jimenez, Antonio & Ortiz, Carlos & Becerra, Jose A. & Chacartegui, Ricardo, 2018. "Energy assessment method towards low-carbon energy schools," Energy, Elsevier, vol. 159(C), pages 310-326.
    5. Anxiao Zhang & Regina Bokel & Andy Van den Dobbelsteen & Yanchen Sun & Qiong Huang & Qi Zhang, 2017. "The Effect of Geometry Parameters on Energy and Thermal Performance of School Buildings in Cold Climates of China," Sustainability, MDPI, vol. 9(10), pages 1-19, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Piotr Michalak, 2022. "Thermal—Airflow Coupling in Hourly Energy Simulation of a Building with Natural Stack Ventilation," Energies, MDPI, vol. 15(11), pages 1-18, June.
    2. Khaled Hossin & Hessa AlShehhi, 2024. "Energy Consumption Behavior Analysis in the UAE Educational Buildings for Sustainable Economy: A Case Study of Ras Al Khaimah Schools," International Journal of Energy Economics and Policy, Econjournals, vol. 14(2), pages 69-76, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carla Balocco & Alessandro Colaianni, 2018. "Modelling of Reversible Plant System Operations in a Cultural Heritage School Building for Indoor Thermal Comfort," Sustainability, MDPI, vol. 10(10), pages 1-16, October.
    2. Jing, Gang & Cai, Wenjian & Zhang, Xin & Cui, Can & Yin, Xiaohong & Xian, Huacai, 2019. "An energy-saving oriented air balancing strategy for multi-zone demand-controlled ventilation system," Energy, Elsevier, vol. 172(C), pages 1053-1065.
    3. Belén Onecha & Alicia Dotor, 2021. "Simulation Method to Assess Thermal Comfort in Historical Buildings with High-Volume Interior Spaces—The Case of the Gothic Basilica of Sta. Maria del Mar in Barcelona," Sustainability, MDPI, vol. 13(5), pages 1-20, March.
    4. Guillermo Efren Ovando-Chacon & Sandy Luz Ovando-Chacon & Abelardo Rodríguez-León & Mario Díaz-González, 2023. "Numerical Study of Indoor Air Quality in a University Professor’s Office," Sustainability, MDPI, vol. 15(5), pages 1-19, February.
    5. Carla Balocco & Lorenzo Leoncini, 2020. "Energy Cost for Effective Ventilation and Air Quality for Healthy Buildings: Plant Proposals for a Historic Building School Reopening in the Covid-19 Era," Sustainability, MDPI, vol. 12(20), pages 1-16, October.
    6. Hettinga, Sanne & van ’t Veer, Rein & Boter, Jaap, 2023. "Large scale energy labelling with models: The EU TABULA model versus machine learning with open data," Energy, Elsevier, vol. 264(C).
    7. Radwa Salem & Ali Bahadori-Jahromi & Anastasia Mylona & Paulina Godfrey & Darren Cook, 2018. "Comparison and Evaluation of the Potential Energy, Carbon Emissions, and Financial Impacts from the Incorporation of CHP and CCHP Systems in Existing UK Hotel Buildings," Energies, MDPI, vol. 11(5), pages 1-15, May.
    8. Hyeonji Seol & Daniel Arztmann & Naree Kim & Alvaro Balderrama, 2023. "Estimation of Natural Ventilation Rates in an Office Room with 145 mm-Diameter Circular Openings Using the Occupant-Generated Tracer-Gas Method," Sustainability, MDPI, vol. 15(13), pages 1-25, June.
    9. Pei-Chun Tu & Wen-Chen Cheng & Ping-Cheng Hou & Yu-Sen Chang, 2020. "Effects of Types of Horticultural Activity on the Physical and Mental State of Elderly Individuals," IJERPH, MDPI, vol. 17(14), pages 1-13, July.
    10. Ling-Yi Chang & Tong-Bou Chang, 2023. "Air Conditioning Operation Strategies for Comfort and Indoor Air Quality in Taiwan’s Elementary Schools," Energies, MDPI, vol. 16(5), pages 1-19, March.
    11. George M. Stavrakakis & Panagiotis L. Zervas & Konstantinos Terzis & Panagiotis Langouranis & Panagiota Saranti & Yorgos J. Stephanedes, 2023. "Exploitation of Mediterranean Cooperation Projects’ Tools for the Development of Public Buildings’ Energy Efficiency Plans at Local Level: A Case Study in Greece," Energies, MDPI, vol. 16(8), pages 1-33, April.
    12. Cui, Can & Xue, Jing, 2024. "Energy and comfort aware operation of multi-zone HVAC system through preference-inspired deep reinforcement learning," Energy, Elsevier, vol. 292(C).
    13. Tureková, Ivana & Marková, Iveta & Sventeková, Eva & Harangózo, Jozef, 2022. "Evaluation of microclimatic conditions during the teaching process in selected school premises. Slovak case study," Energy, Elsevier, vol. 239(PD).
    14. Guido Marseglia & Blanca Fernandez Vasquez-Pena & Carlo Maria Medaglia & Ricardo Chacartegui, 2020. "Alternative Fuels for Combined Cycle Power Plants: An Analysis of Options for a Location in India," Sustainability, MDPI, vol. 12(8), pages 1-25, April.
    15. Wang, Cheng & Guo, Xiaofeng & Zhu, Ye, 2019. "Energy saving with Optic-Variable Wall for stable air temperature control," Energy, Elsevier, vol. 173(C), pages 38-47.
    16. Fusheng Ma & Changhong Zhan & Xiaoyang Xu, 2019. "Investigation and Evaluation of Winter Indoor Air Quality of Primary Schools in Severe Cold Weather Areas of China," Energies, MDPI, vol. 12(9), pages 1-19, April.
    17. Geraldi, Matheus Soares & Ghisi, Enedir, 2022. "Integrating evidence-based thermal satisfaction in energy benchmarking: A data-driven approach for a whole-building evaluation," Energy, Elsevier, vol. 244(PB).
    18. Lizana, Jesus & Halloran, Claire E. & Wheeler, Scot & Amghar, Nabil & Renaldi, Renaldi & Killendahl, Markus & Perez-Maqueda, Luis A. & McCulloch, Malcolm & Chacartegui, Ricardo, 2023. "A national data-based energy modelling to identify optimal heat storage capacity to support heating electrification," Energy, Elsevier, vol. 262(PA).
    19. Lizana, Jesus & de-Borja-Torrejon, Manuel & Barrios-Padura, Angela & Auer, Thomas & Chacartegui, Ricardo, 2019. "Passive cooling through phase change materials in buildings. A critical study of implementation alternatives," Applied Energy, Elsevier, vol. 254(C).
    20. Frida Bazzocchi & Cecilia Ciacci & Vincenzo Di Naso, 2021. "Evaluation of Environmental and Economic Sustainability for the Building Envelope of Low-Carbon Schools," Sustainability, MDPI, vol. 13(4), pages 1-22, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:7:p:4074-:d:782775. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.