IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i3p1786-d742193.html
   My bibliography  Save this article

Allotment of Waste and Degraded Land Parcels for PV Based Solar Parks in India: Effects on Power Generation Cost and Influence on Investment Decision-Making

Author

Listed:
  • Sanju John Thomas

    (Department of Mechanical Engineering, Cochin University of Science and Technology (CUSAT), Cochin 682022, India)

  • Sheffy Thomas

    (Federal Institute of Science and Technology, Angamaly 683572, India)

  • Sudhansu S. Sahoo

    (Department of Mechanical Engineering, Odisha University of Technology and Research (OUTR), Bhubaneswar 751003, India)

  • Ravindran Gobinath

    (Department of Civil Engineering, S R Engineering College, Warangal 506371, India)

  • Mohamed M. Awad

    (Mechanical Power Engineering Department, Mansoura University, Mansoura 35516, Egypt)

Abstract

Solar parks are well-defined areas developed in the high solar potential area, with the required infrastructure to minimize the potential threat for the developers. Land occupancy is a major concern for the solar park. The government policy mostly emphasizes the use of waste-degraded land for solar parks. In a competitive energy market, any attempt to use waste-degraded land parcels, without policy regulatory support, can bring large-scale disruptions in the quality and cost of power. The present study investigates the potential of using waste degraded land, with a focus on the impact on the cost of generation and decision making. The study investigates the possibility of including the cost of the externalities in the overall cost economics, through policy and regulatory interventions. Data related to India has been considered in the present analysis. Results show that there are less socio-economic and ecological impacts in using wastelands, compared to land, in urban-semi urban areas with an opportunity cost. Thus, the policy and regulatory interventions could promote wasteland utilization and lure favorable decision-making on investments.

Suggested Citation

  • Sanju John Thomas & Sheffy Thomas & Sudhansu S. Sahoo & Ravindran Gobinath & Mohamed M. Awad, 2022. "Allotment of Waste and Degraded Land Parcels for PV Based Solar Parks in India: Effects on Power Generation Cost and Influence on Investment Decision-Making," Sustainability, MDPI, vol. 14(3), pages 1-16, February.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:3:p:1786-:d:742193
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/3/1786/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/3/1786/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alexandra Vrînceanu & Ines Grigorescu & Monica Dumitrașcu & Irena Mocanu & Cristina Dumitrică & Dana Micu & Gheorghe Kucsicsa & Bianca Mitrică, 2019. "Impacts of Photovoltaic Farms on the Environment in the Romanian Plain," Energies, MDPI, vol. 12(13), pages 1-18, July.
    2. Dawn, Subhojit & Tiwari, Prashant Kumar & Goswami, Arup Kumar & Mishra, Manash Kumar, 2016. "Recent developments of solar energy in India: Perspectives, strategies and future goals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 215-235.
    3. Roy, Swapna & Ghosh, Biswajit, 2017. "Land utilization performance of ground mounted photovoltaic power plants: A case study," Renewable Energy, Elsevier, vol. 114(PB), pages 1238-1246.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vrînceanu, Alexandra & Dumitrașcu, Monica & Kucsicsa, Gheorghe, 2022. "Site suitability for photovoltaic farms and current investment in Romania," Renewable Energy, Elsevier, vol. 187(C), pages 320-330.
    2. Rovick Tarife & Yosuke Nakanishi & Yicheng Zhou & Noel Estoperez & Anacita Tahud, 2023. "Integrated GIS and Fuzzy-AHP Framework for Suitability Analysis of Hybrid Renewable Energy Systems: A Case in Southern Philippines," Sustainability, MDPI, vol. 15(3), pages 1-25, January.
    3. Khatri, Rahul & Goyal, Rahul & Sharma, Ravi Kumar, 2021. "Advances in the developments of solar cooker for sustainable development: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    4. Manju, S. & Sagar, Netramani, 2017. "Renewable energy integrated desalination: A sustainable solution to overcome future fresh-water scarcity in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 594-609.
    5. Valerii Havrysh & Antonina Kalinichenko & Edyta Szafranek & Vasyl Hruban, 2022. "Agricultural Land: Crop Production or Photovoltaic Power Plants," Sustainability, MDPI, vol. 14(9), pages 1-23, April.
    6. Burke, Paul J. & Widnyana, Jinnie & Anjum, Zeba & Aisbett, Emma & Resosudarmo, Budy & Baldwin, Kenneth G.H., 2019. "Overcoming barriers to solar and wind energy adoption in two Asian giants: India and Indonesia," Energy Policy, Elsevier, vol. 132(C), pages 1216-1228.
    7. Lee, Minhyun & Hong, Taehoon & Yoo, Hyunji & Koo, Choongwan & Kim, Jimin & Jeong, Kwangbok & Jeong, Jaewook & Ji, Changyoon, 2017. "Establishment of a base price for the Solar Renewable Energy Credit (SREC) from the perspective of residents and state governments in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1066-1080.
    8. Nandal, Vinod & Kumar, Raj & Singh, S.K., 2019. "Barriers identification and analysis of solar power implementation in Indian thermal power plants: An Interpretative Structural Modeling approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    9. Sandipa Bhattacharya & Mitali Sarkar & Biswajit Sarkar & Lakshmi Thangavelu, 2023. "Exploring Sustainability and Economic Growth through Generation of Renewable Energy with Respect to the Dynamical Environment," Mathematics, MDPI, vol. 11(19), pages 1-22, September.
    10. Bose, A.S. & Sarkar, S., 2019. "India's e-reverse auctions (2017–2018) for allocating renewable energy capacity: An evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 762-774.
    11. Qun Niu & Han Wang & Ziyuan Sun & Zhile Yang, 2019. "An Improved Bare Bone Multi-Objective Particle Swarm Optimization Algorithm for Solar Thermal Power Plants," Energies, MDPI, vol. 12(23), pages 1-22, November.
    12. Diana Enescu & Alessandro Ciocia & Udayanga I. K. Galappaththi & Harsha Wickramasinghe & Francesco Alagna & Angela Amato & Francisco Díaz-González & Filippo Spertino & Valeria Cocina, 2023. "Energy Tariff Policies for Renewable Energy Development: Comparison between Selected European Countries and Sri Lanka," Energies, MDPI, vol. 16(4), pages 1-26, February.
    13. Morice R. O. Odhiambo & Adnan Abbas & Xiaochan Wang & Gladys Mutinda, 2020. "Solar Energy Potential in the Yangtze River Delta Region—A GIS-Based Assessment," Energies, MDPI, vol. 14(1), pages 1-22, December.
    14. Michael Fratita & Florin Popescu & Eugen Rusu & Ion V. Ion & Răzvan Mahu, 2023. "Romanian Energy System Analysis (Production, Consumption, and Distribution)," Energies, MDPI, vol. 16(16), pages 1-14, August.
    15. Zhang, Yajuan & Wang, Zheng & Li, Shuangcheng, 2024. "Can a new power system help maintain planetary boundaries within a safe operating space?," Energy, Elsevier, vol. 304(C).
    16. Acaroğlu, Hakan & Baykul, M. Celalettin, 2018. "Economic guideline about financial utilization of flat-plate solar collectors (FPSCs) for the consumer segment in the city of Eskisehir," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2045-2058.
    17. Sindhu, Sonal & Nehra, Vijay & Luthra, Sunil, 2017. "Investigation of feasibility study of solar farms deployment using hybrid AHP-TOPSIS analysis: Case study of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 496-511.
    18. Mladen Bošnjaković & Robert Santa & Zoran Crnac & Tomislav Bošnjaković, 2023. "Environmental Impact of PV Power Systems," Sustainability, MDPI, vol. 15(15), pages 1-26, August.
    19. Yanay Farja & Mariusz Maciejczak, 2021. "Economic Implications of Agricultural Land Conversion to Solar Power Production," Energies, MDPI, vol. 14(19), pages 1-15, September.
    20. Negrete, Moira & Fuentes, Marcelo & Kraslawski, Andrzej & Irarrazaval, Felipe & Herrera-León, Sebastián, 2024. "Socio-environmental implications of the decarbonization of copper and lithium mining and mineral processing," Resources Policy, Elsevier, vol. 95(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:3:p:1786-:d:742193. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.