IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i2p710-d720875.html
   My bibliography  Save this article

Investigation of Dynamic Characteristics of Liquid Nitrogen Droplet Impact on Solid Surface

Author

Listed:
  • Ke Zhao

    (School of Biology and Food Engineering, Chuzhou University, Chuzhou 239000, China)

  • Yang Ding

    (School of Mathematics and Finance, Chuzhou University, Chuzhou 239000, China)

Abstract

Liquid nitrogen spray cooling technology exhibits excellent heat transfer efficiency and environmental protection performance. The promotion of this technology plays an important role in improving the sustainable development of the refrigeration industry. In order to clarify its complex microscale behavior, the coupled Level Set-VOF method was adopted to study the dynamic characteristics of liquid nitrogen droplet impact on solid surface in this paper. The spreading behaviors under various factors (initial velocity, initial diameter, wall temperature, and We number) were systematically analyzed. The results show that the spreading behaviors of liquid nitrogen droplet share the same process with the normal medium, which are rebound, retraction, and splashing. For the droplet with smaller velocity and diameter, Rebound is the common phenomenon due to the smaller kinetic energy. With the increase of droplet diameter (0.2 mm to 0.5 mm) and velocity (0.1 m/s to 5 m/s), the spreading factor increases rapidly and the spreading behaviors evolve into retraction and splashing. The increase of wall temperature accelerates the droplets spreading, and the spreading factor increases accordingly. For the liquid nitrogen droplets hit the wall, the dynamic behaviors of rebound ( We < 0.2), retraction (0.2 < We < 4.9), and splashing ( We > 4.9) will occur with the droplet weber number increased, which are consistent with the common medium. However, due to liquid nitrogen having lower viscosity and surface tension, the conditions of morphological transformations are different from the common media. The maximum spreading diameter has a power correlation with We , the power index of We is 0.306 for liquid nitrogen, lager than common medium (0.25). The reasons are: (1) the better wettability of liquid nitrogen, and (2) the vapor generated by the violent phase change ejects along the axial direction. The article will provide a certain theoretical basis for liquid nitrogen spray cooling technology, and can also enrich the flow dynamics of cryogenic fluids.

Suggested Citation

  • Ke Zhao & Yang Ding, 2022. "Investigation of Dynamic Characteristics of Liquid Nitrogen Droplet Impact on Solid Surface," Sustainability, MDPI, vol. 14(2), pages 1-12, January.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:2:p:710-:d:720875
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/2/710/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/2/710/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yi Chai & Xueqin Lin & Dai Wang, 2021. "Industrial Structure Transformation and Layout Optimization of Beijing-Tianjin-Hebei Region under Carbon Emission Constraints," Sustainability, MDPI, vol. 13(2), pages 1-20, January.
    2. Yilmaz Bayar & Marius Dan Gavriletea & Stefan Sauer & Dragos Paun, 2021. "Impact of Municipal Waste Recycling and Renewable Energy Consumption on CO 2 Emissions across the European Union (EU) Member Countries," Sustainability, MDPI, vol. 13(2), pages 1-12, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang Zhang & Wenlong Li & Jiawen Sun & Haidong Zhao & Haiying Lin, 2023. "A Research Paradigm for Industrial Spatial Layout Optimization and High-Quality Development in The Context of Carbon Peaking," Sustainability, MDPI, vol. 15(4), pages 1-30, February.
    2. Qifan Guan, 2023. "Decomposing and Decoupling the Energy-Related Carbon Emissions in the Beijing–Tianjin–Hebei Region Using the Extended LMDI and Tapio Index Model," Sustainability, MDPI, vol. 15(12), pages 1-17, June.
    3. Xiaoyu He & Bo Li, 2023. "A Study on the Influence of Green Industrial Policy on Urban Green Development: Based on the Empirical Data of Ecological Industrial Park Pilot Construction," Sustainability, MDPI, vol. 15(13), pages 1-29, June.
    4. I. Jianu & S. M. Jeloaica & M. D. Tudorache, 2022. "Greenhouse Gas Emissions and its Main Drivers: a Panel Assessment for EU-27 Member States," Papers 2205.00295, arXiv.org.
    5. Yunting Feng & Yong Geng & Ge Zhao & Mengya Li, 2022. "Carbon Emission Constraint Policy in an OEM and Outsourcing Remanufacturer Supply Chain with Consumer Preferences," IJERPH, MDPI, vol. 19(8), pages 1-16, April.
    6. Rahman, Mohammad Mafizur & Alam, Khosrul, 2022. "Impact of industrialization and non-renewable energy on environmental pollution in Australia: Do renewable energy and financial development play a mitigating role?," Renewable Energy, Elsevier, vol. 195(C), pages 203-213.
    7. Runde Gu & Chunfa Li & Dongdong Li & Yangyang Yang & Shan Gu, 2022. "The Impact of Rationalization and Upgrading of Industrial Structure on Carbon Emissions in the Beijing-Tianjin-Hebei Urban Agglomeration," IJERPH, MDPI, vol. 19(13), pages 1-16, June.
    8. Guoxian Cao & Chaoyang Guo & Hezhong Li, 2022. "Risk Analysis of Public–Private Partnership Waste-to-Energy Incineration Projects from the Perspective of Rural Revitalization," Sustainability, MDPI, vol. 14(13), pages 1-19, July.
    9. Li, Junhui & Li, Guowei, 2024. "Natural resources utilization, digital technology, and green development expenditures can reduce environmental stress: A case study of emerging economies," Resources Policy, Elsevier, vol. 95(C).
    10. Junsong Jia & Jing Lei & Chundi Chen & Xu Song & Yexi Zhong, 2021. "Contribution of Renewable Energy Consumption to CO 2 Emission Mitigation: A Comparative Analysis from a Global Geographic Perspective," Sustainability, MDPI, vol. 13(7), pages 1-23, March.
    11. Su, Mengying & Yang, Zhongyu & Abbas, Shujaat & Bilan, Yuriy & Majewska, Agnieszka, 2023. "Toward enhancing environmental quality in OECD countries: Role of municipal waste, renewable energy, environmental innovation, and environmental policy," Renewable Energy, Elsevier, vol. 211(C), pages 975-984.
    12. Xingyao Liu & Kai Wang & Hui Lu, 2023. "Research on Supply Chain Decisions for Production Waste Recovery and Reuse Based on a Recycler Focus," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
    13. Rahman, Mohammad Mafizur & Alam, Khosrul, 2022. "Effects of corruption, technological innovation, globalisation, and renewable energy on carbon emissions in Asian countries," Utilities Policy, Elsevier, vol. 79(C).
    14. Anna Komarnicka & Anna Murawska, 2021. "Comparison of Consumption and Renewable Sources of Energy in European Union Countries—Sectoral Indicators, Economic Conditions and Environmental Impacts," Energies, MDPI, vol. 14(12), pages 1-24, June.
    15. Alena Harbiankova & Sławomir Kalinowski, 2023. "MSW Management to Zero Waste: Challenges and Perspectives in Belarus," Sustainability, MDPI, vol. 15(3), pages 1-22, January.
    16. Wang, Mengxia & Hossain, Mohammad Razib & Si Mohammed, Kamel & Cifuentes-Faura, Javier & Cai, Xiaotong, 2023. "Heterogenous Effects of Circular Economy, Green energy and Globalization on CO2 emissions: Policy based analysis for sustainable development," Renewable Energy, Elsevier, vol. 211(C), pages 789-801.
    17. Qiuyue Li & Hao Wang & Zhenshan Li & Shangwei Yuan, 2022. "A Comparative Study of the Effect of Different Carbon-Reduction Policies on Outsourcing Remanufacturing," IJERPH, MDPI, vol. 19(6), pages 1-22, March.
    18. Rossanto Dwi Haryanto & Yessi Rahmawati & Omar Guillermo Rojas Altamirano & Salsabila Fahar Ahsani & Adrianus Kabubu Hudang & Tri Haryanto, 2022. "An Empirical Investigation between FDI, Tourism, and Trade on CO2 Emission in Asia: Testing Environmental Kuznet Curve and Pollution Haven Hypothesis," International Journal of Energy Economics and Policy, Econjournals, vol. 12(4), pages 385-393, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:2:p:710-:d:720875. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.