IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i2p700-d720829.html
   My bibliography  Save this article

Studies on Recycling Silane Controllable Recovered Carbon Fiber from Waste CFRP

Author

Listed:
  • Kai-Yen Chin

    (Department of Molecular Science and Engineering, Research and Development Center for Smart Textile Technology, National Taipei University of Technology, Taipei 106, Taiwan
    These authors contributed equally to this work.)

  • Angus Shiue

    (Department of Molecular Science and Engineering, Research and Development Center for Smart Textile Technology, National Taipei University of Technology, Taipei 106, Taiwan
    These authors contributed equally to this work.)

  • Yi-Jing Wu

    (Department of Molecular Science and Engineering, Research and Development Center for Smart Textile Technology, National Taipei University of Technology, Taipei 106, Taiwan)

  • Shu-Mei Chang

    (Department of Molecular Science and Engineering, Research and Development Center for Smart Textile Technology, National Taipei University of Technology, Taipei 106, Taiwan)

  • Yeou-Fong Li

    (Department of Civil Engineering, National Taipei University of Technology, Taipei 106, Taiwan)

  • Ming-Yuan Shen

    (Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan)

  • Graham Leggett

    (LI-COR Biosciences, Cambridge CB4 OWS, UK)

Abstract

During the production process of commercial carbon fiber reinforced polymers (CFRPs), a silane coupling agent is added to the carbon fiber at the sizing step as a binder to enhance the product’s physical properties. While improving strength, the silane coupling agent results in a silane residue on recovered carbon fibers (rCF) after recycling, which is a disadvantage when using recovered carbon fibers in the manufacture of new materials. In this study, the rCF is recovered from waste carbon fiber reinforced polymers (CFRPs) from the bicycle industry by a microwave pyrolysis method, applying a short reaction time and in an air atmosphere. Moreover, the rCF are investigated for their surface morphologies and the elements present on the surface. The silicon element content changes with pyrolysis temperature were 0.4, 0.9, and 0.2%, respectively, at 450, 550, and 650 °C. Additionally, at 950 °C, silicon content can be reduced to 0.1 ± 0.05%. The uniformity of microwave pyrolysis recycle treatment was compared with traditional furnace techniques used for bulk waste treatment by applying the same temperature regime. This work provides evidence that microwave pyrolysis can be used as an alternative method for the production of rCFs for reuse applications.

Suggested Citation

  • Kai-Yen Chin & Angus Shiue & Yi-Jing Wu & Shu-Mei Chang & Yeou-Fong Li & Ming-Yuan Shen & Graham Leggett, 2022. "Studies on Recycling Silane Controllable Recovered Carbon Fiber from Waste CFRP," Sustainability, MDPI, vol. 14(2), pages 1-12, January.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:2:p:700-:d:720829
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/2/700/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/2/700/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jensen, J.P. & Skelton, K., 2018. "Wind turbine blade recycling: Experiences, challenges and possibilities in a circular economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 165-176.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yeou-Fong Li & Walter Chen & Ta-Wui Cheng, 2022. "The Sustainable Composite Materials in Civil and Architectural Engineering," Sustainability, MDPI, vol. 14(4), pages 1-3, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francisco Haces-Fernandez, 2020. "GoWInD: Wind Energy Spatiotemporal Assessment and Characterization of End-of-Life Activities," Energies, MDPI, vol. 13(22), pages 1-20, November.
    2. Sara Taherinezhad Tayebi & Matteo Sambucci & Marco Valente, 2024. "Waste Management of Wind Turbine Blades: A Comprehensive Review on Available Recycling Technologies with A Focus on Overcoming Potential Environmental Hazards Caused by Microplastic Production," Sustainability, MDPI, vol. 16(11), pages 1-24, May.
    3. Winkler, Lorenz & Kilic, Onur A. & Veldman, Jasper, 2022. "Collaboration in the offshore wind farm decommissioning supply chain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    4. Liang, Yanan & Kleijn, René & Tukker, Arnold & van der Voet, Ester, 2022. "Material requirements for low-carbon energy technologies: A quantitative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    5. John Dorrell & Keunjae Lee, 2020. "The Cost of Wind: Negative Economic Effects of Global Wind Energy Development," Energies, MDPI, vol. 13(14), pages 1-25, July.
    6. Sandra Sorte & Nelson Martins & Mónica S. A. Oliveira & German L. Vela & Carlos Relvas, 2023. "Unlocking the Potential of Wind Turbine Blade Recycling: Assessing Techniques and Metrics for Sustainability," Energies, MDPI, vol. 16(22), pages 1-28, November.
    7. Elia, A. & Taylor, M. & Ó Gallachóir, B. & Rogan, F., 2020. "Wind turbine cost reduction: A detailed bottom-up analysis of innovation drivers," Energy Policy, Elsevier, vol. 147(C).
    8. Chong, Cheng Tung & Fan, Yee Van & Lee, Chew Tin & Klemeš, Jiří Jaromír, 2022. "Post COVID-19 ENERGY sustainability and carbon emissions neutrality," Energy, Elsevier, vol. 241(C).
    9. Xu, Jiuping & Liu, Tingting, 2020. "Technological paradigm-based approaches towards challenges and policy shifts for sustainable wind energy development," Energy Policy, Elsevier, vol. 142(C).
    10. Majewski, Peter & Florin, Nick & Jit, Joytishna & Stewart, Rodney A., 2022. "End-of-life policy considerations for wind turbine blades," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    11. Emma L. Delaney & Paul G. Leahy & Jennifer M. McKinley & T. Russell Gentry & Angela J. Nagle & Jeffrey Elberling & Lawrence C. Bank, 2023. "Sustainability Implications of Current Approaches to End-of-Life of Wind Turbine Blades—A Review," Sustainability, MDPI, vol. 15(16), pages 1-19, August.
    12. Teixeira, Bernardo & Brito, Miguel Centeno & Mateus, António, 2024. "Raw materials for the Portuguese decarbonization roadmap: The case of solar photovoltaics and wind energy," Resources Policy, Elsevier, vol. 90(C).
    13. Lund, K.W. & Madsen, E.S., 2024. "State-of-the-art value chain roadmap for sustainable end-of-life wind turbine blades," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    14. Mumtaz, Hamza & Sobek, Szymon & Sajdak, Marcin & Muzyka, Roksana & Drewniak, Sabina & Werle, Sebastian, 2023. "Oxidative liquefaction as an alternative method of recycling and the pyrolysis kinetics of wind turbine blades," Energy, Elsevier, vol. 278(PB).
    15. Furszyfer Del Rio, Dylan D. & Sovacool, Benjamin K. & Foley, Aoife M. & Griffiths, Steve & Bazilian, Morgan & Kim, Jinsoo & Rooney, David, 2022. "Decarbonizing the glass industry: A critical and systematic review of developments, sociotechnical systems and policy options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    16. Ali Akbar Firoozi & Farzad Hejazi & Ali Asghar Firoozi, 2024. "Advancing Wind Energy Efficiency: A Systematic Review of Aerodynamic Optimization in Wind Turbine Blade Design," Energies, MDPI, vol. 17(12), pages 1-30, June.
    17. Beauson, J. & Laurent, A. & Rudolph, D.P. & Pagh Jensen, J., 2022. "The complex end-of-life of wind turbine blades: A review of the European context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    18. Anne P. M. Velenturf, 2021. "A Framework and Baseline for the Integration of a Sustainable Circular Economy in Offshore Wind," Energies, MDPI, vol. 14(17), pages 1-41, September.
    19. Dongwang Zhang & Zhong Huang & Xiaobei Shi & Xiaofei Sun & Tuo Zhou & Hairui Yang & Rushan Bie & Man Zhang, 2024. "Experimental Study and Process Simulation on Pyrolysis Characteristics of Decommissioned Wind Turbine Blades," Energies, MDPI, vol. 17(13), pages 1-16, July.
    20. Mumtaz, Hamza & Sobek, Szymon & Sajdak, Marcin & Muzyka, Roksana & Werle, Sebastian, 2023. "An experimental investigation and process optimization of the oxidative liquefaction process as the recycling method of the end-of-life wind turbine blades," Renewable Energy, Elsevier, vol. 211(C), pages 269-278.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:2:p:700-:d:720829. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.