IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i24p16710-d1002267.html
   My bibliography  Save this article

Geotechnical Characteristics of Fine-Grained Soils Stabilized with Fly Ash, a Review

Author

Listed:
  • Canan Turan

    (Department of Engineering, University of Exeter, Exeter EX4 4QF, UK)

  • Akbar A. Javadi

    (Department of Engineering, University of Exeter, Exeter EX4 4QF, UK)

  • Raffaele Vinai

    (Department of Engineering, University of Exeter, Exeter EX4 4QF, UK)

  • Ramiz Beig Zali

    (Department of Engineering, University of Exeter, Exeter EX4 4QF, UK)

Abstract

Fly ash is a waste material obtained from burning of coal in thermal power plants. Coal consumption is still very high and is expected to remain above 38% globally. Therefore, large volumes of fly ash are produced every year that need to be managed as waste. Improper disposal of fly ash can lead to surface water and ground water pollution and adversely affect human health and environment. The use of fly ash as an agent to stabilize soil has recently become popular in geotechnical engineering due to its many benefits such as being eco-friendly and cost-effective, and improving the geotechnical characteristics of the soil. This paper presents a review of the geotechnical properties of fly ash-stabilized fine-grained soils. Several features of fly ash, including classification, physical, geotechnical, chemical, and mineralogical properties, health concerns, disposal, availability, and cost are analyzed. The effects of fly ash in improving a wide range of mechanical properties of soils including unconfined compressive strength, shear strength, CBR value, consolidation and/or swelling characteristics, and permeability are reviewed in detail. It is shown that fly ash can be a substitute material for use in soil stabilization, leading to substantial economic and environmental benefits.

Suggested Citation

  • Canan Turan & Akbar A. Javadi & Raffaele Vinai & Ramiz Beig Zali, 2022. "Geotechnical Characteristics of Fine-Grained Soils Stabilized with Fly Ash, a Review," Sustainability, MDPI, vol. 14(24), pages 1-31, December.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:24:p:16710-:d:1002267
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/24/16710/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/24/16710/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kumar, Subodh & Patil, C.B., 2006. "Estimation of resource savings due to fly ash utilization in road construction," Resources, Conservation & Recycling, Elsevier, vol. 48(2), pages 125-140.
    2. Fusheng Zha & Songyu Liu & Yanjun Du & Kerui Cui, 2008. "Behavior of expansive soils stabilized with fly ash," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 47(3), pages 509-523, December.
    3. Katja Ohenoja & Janne Pesonen & Juho Yliniemi & Mirja Illikainen, 2020. "Utilization of Fly Ashes from Fluidized Bed Combustion: A Review," Sustainability, MDPI, vol. 12(7), pages 1-26, April.
    4. Asokan, P. & Saxena, Mohini & Asolekar, Shyam R., 2005. "Coal combustion residues—environmental implications and recycling potentials," Resources, Conservation & Recycling, Elsevier, vol. 43(3), pages 239-262.
    5. Nishantha Bandara & Hiroshan Hettiarachchi & Elin Jensen & Tarik H. Binoy, 2020. "Upcycling Potential of Industrial Waste in Soil Stabilization: Use of Kiln Dust and Fly Ash to Improve Weak Pavement Subgrades Encountered in Michigan, USA," Sustainability, MDPI, vol. 12(17), pages 1-13, September.
    6. Senol, Aykut & Edil, Tuncer B. & Bin-Shafique, Md.Sazzad & Acosta, Hector A. & Benson, Craig H., 2006. "Soft subgrades’ stabilization by using various fly ashes," Resources, Conservation & Recycling, Elsevier, vol. 46(4), pages 365-376.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Quadri Olakunle Babatunde & Yong-Hoon Byun, 2023. "Soil Stabilization Using Zein Biopolymer," Sustainability, MDPI, vol. 15(3), pages 1-12, January.
    2. Abdülhakim Zeybek & Murat Eyin, 2023. "Experimental Study on Liquefaction Characteristics of Saturated Sands Mixed with Fly Ash and Tire Crumb Rubber," Sustainability, MDPI, vol. 15(4), pages 1-24, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiaxiao Ma & Nan Yan & Mingyi Zhang & Junwei Liu & Xiaoyu Bai & Yonghong Wang, 2020. "Mechanical Characteristics of Soda Residue Soil Incorporating Different Admixture: Reuse of Soda Residue," Sustainability, MDPI, vol. 12(14), pages 1-19, July.
    2. Umit Calik & Erol Sadoglu, 2014. "Classification, shear strength, and durability of expansive clayey soil stabilized with lime and perlite," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(3), pages 1289-1303, April.
    3. Bin-Shafique, Sazzad & Rahman, K. & Yaykiran, Mustafa & Azfar, Ireen, 2010. "The long-term performance of two fly ash stabilized fine-grained soil subbases," Resources, Conservation & Recycling, Elsevier, vol. 54(10), pages 666-672.
    4. Munawar, Muhammad Assad & Khoja, Asif Hussain & Naqvi, Salman Raza & Mehran, Muhammad Taqi & Hassan, Muhammad & Liaquat, Rabia & Dawood, Usama Fida, 2021. "Challenges and opportunities in biomass ash management and its utilization in novel applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    5. Marc Fadel & Eliane Farah & Nansi Fakhri & Frédéric Ledoux & Dominique Courcot & Charbel Afif, 2024. "A Comprehensive Review of PM-Related Studies in Industrial Proximity: Insights from the East Mediterranean Middle East Region," Sustainability, MDPI, vol. 16(20), pages 1-44, October.
    6. Elżbieta Jarosz-Krzemińska & Joanna Poluszyńska, 2020. "Repurposing Fly Ash Derived from Biomass Combustion in Fluidized Bed Boilers in Large Energy Power Plants as a Mineral Soil Amendment," Energies, MDPI, vol. 13(18), pages 1-21, September.
    7. Chana Phutthananon & Niyawan Tippracha & Pornkasem Jongpradist & Jukkrawut Tunsakul & Weerachart Tangchirapat & Pitthaya Jamsawang, 2023. "Investigation of Strength and Microstructural Characteristics of Blended Cement-Admixed Clay with Bottom Ash," Sustainability, MDPI, vol. 15(4), pages 1-18, February.
    8. Andrzej Greinert & Maria Mrówczyńska & Wojciech Szefner, 2019. "Study on the Possibilities of Natural Use of Ash Granulate Obtained from the Combustion of Pellets from Plant Biomass," Energies, MDPI, vol. 12(13), pages 1-19, July.
    9. You Wang & Hongdong Zhang & Zhuangzhuang Zhang, 2021. "Experimental Study on Mechanics and Water Stability of High Liquid Limit Soil Stabilized by Compound Stabilizer: A Sustainable Construction Perspective," Sustainability, MDPI, vol. 13(10), pages 1-23, May.
    10. Jhanvi Gupta & Sanskar Jain & Suprava Chakraborty & Vladimir Panchenko & Alexandr Smirnov & Igor Yudaev, 2023. "Advancing Sustainable Energy Transition: Blockchain and Peer-to-Peer Energy Trading in India’s Green Revolution," Sustainability, MDPI, vol. 15(18), pages 1-19, September.
    11. Ming Li & Yueguan Yan & Huayang Dai & Zhaojiang Zhang, 2023. "Study on Rock and Surface Subsidence Laws of Super-High Water Material Backfilling and Mining Technology: A Case Study in Hengjian Coal Mine," Sustainability, MDPI, vol. 15(11), pages 1-22, May.
    12. Ali Sinan Soğancı & Yavuz Yenginar & İlyas Özkan & Yusuf Güzel & Adnan Özdemir, 2024. "Waste Management of Red Mud and Fly Ash to Utilize in Road Subgrade Material," Sustainability, MDPI, vol. 16(7), pages 1-14, April.
    13. Tripathi, Ramesh C. & Masto, Reginald E. & Ram, Lal C., 2009. "Bulk use of pond ash for cultivation of wheat–maize–eggplant crops in sequence on a fallow land," Resources, Conservation & Recycling, Elsevier, vol. 54(2), pages 134-139.
    14. Xiaohui Sun & Junpei He & Wei Lv & Silin Wu & Yongshen Peng & Yuansheng Peng & Jianbo Fei & Zezhou Wu, 2023. "Characteristics and Resource Recovery Strategies of Solid Waste in Sewerage Systems," Sustainability, MDPI, vol. 15(2), pages 1-15, January.
    15. Kumar, Subodh & Patil, C.B., 2006. "Estimation of resource savings due to fly ash utilization in road construction," Resources, Conservation & Recycling, Elsevier, vol. 48(2), pages 125-140.
    16. Guru Raju Pokkunuri & Rabindra Kumar Sinha & Amit K. Verma, 2023. "Field Studies on Expansive Soil Stabilization with Nanomaterials and Lime for Flexible Pavement," Sustainability, MDPI, vol. 15(21), pages 1-21, October.
    17. He Huang & Yong Zhou & Yu-Jie Liu & Liang Xiao & Ke Li & Meng-Yao Li & Yang Tian & Fei Wu, 2021. "Source Apportionment and Ecological Risk Assessment of Potentially Toxic Elements in Cultivated Soils of Xiangzhou, China: A Combined Approach of Geographic Information System and Random Forest," Sustainability, MDPI, vol. 13(3), pages 1-22, January.
    18. Kumar, Rakesh & Kumar, Sanjay & Mehrotra, S.P., 2007. "Towards sustainable solutions for fly ash through mechanical activation," Resources, Conservation & Recycling, Elsevier, vol. 52(2), pages 157-179.
    19. He, Ruofan & Wan, Panbing & Yang, Mian, 2024. "The resource curse in energy-rich regions: Evidence from China's ultra-high voltage transmission," Energy, Elsevier, vol. 304(C).
    20. Kumar, Sanjay & Kumar, Rakesh & Bandopadhyay, Amitava, 2006. "Innovative methodologies for the utilisation of wastes from metallurgical and allied industries," Resources, Conservation & Recycling, Elsevier, vol. 48(4), pages 301-314.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:24:p:16710-:d:1002267. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.