IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i24p16478-d998196.html
   My bibliography  Save this article

The Impact of the Aggregate Used on the Possibility of Reducing the Carbon Footprint in Pavement Concrete

Author

Listed:
  • Tomasz Rudnicki

    (Faculty of Civil Engineering and Geodesy, Military University of Technology, 2 Kaliskiego St., 00-908 Warsaw, Poland)

Abstract

The aim of this work was to try to reduce the carbon footprint by means of various types of aggregates which are used for concrete intended for road construction. Four types of aggregates were used in the study: local gravel and dolomite, as well as commonly used granite and amphibolite. Aggregates differed not only in their basic properties, but also in the type of minerals, their origin, and, above all, the distance from the construction site. For the experimental tests, a constant amount of CEM III 42.5 HSR-NA cement, 0/2 mm natural sand, and chemical admixtures based on polycarboxylate and air entrainment were used. For each of the four series, the compressive, flexural, and tensile strength were determined. In order to verify the durability of concrete, the frost resistance in salt and the pore structure in hardened concrete were determined after 150 cycles of freezing and thawing. As a result of the research, it was found that the highest compressive strength was obtained for composition based on amphibolite aggregate. The flexural strength for all series exceeded 5.5 MPa, and the highest tensile strength results were obtained for a composition based on dolomite aggregate. An additional element of the work was the determination of the carbon footprint for each recipe and the comparative analysis. As a result of the analysis, it was possible to reduce the carbon footprint by 32% thanks to the use of CEM III cement instead of CEM I. Additionally, the use of local aggregates located 80 km from the construction site allowed the carbon footprint to be reduced by another 19.2%.

Suggested Citation

  • Tomasz Rudnicki, 2022. "The Impact of the Aggregate Used on the Possibility of Reducing the Carbon Footprint in Pavement Concrete," Sustainability, MDPI, vol. 14(24), pages 1-15, December.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:24:p:16478-:d:998196
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/24/16478/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/24/16478/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Taehyoung Kim & Chang U. Chae, 2016. "Evaluation Analysis of the CO 2 Emission and Absorption Life Cycle for Precast Concrete in Korea," Sustainability, MDPI, vol. 8(7), pages 1-13, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniel Wałach & Aleksandra Mach, 2023. "Effect of Concrete Mix Composition on Greenhouse Gas Emissions over the Full Life Cycle of a Structure," Energies, MDPI, vol. 16(7), pages 1-20, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joowook Kim & Jemin Myoung & Hyunwoo Lim & Doosam Song, 2020. "Efficiency Gap Caused by the Input Data in Evaluating Energy Efficiency of Low-Income Households’ Energy Retrofit Program," Sustainability, MDPI, vol. 12(7), pages 1-11, April.
    2. Jeeyoung Lim & Joseph J. Kim, 2020. "Dynamic Optimization Model for Estimating In-Situ Production Quantity of PC Members to Minimize Environmental Loads," Sustainability, MDPI, vol. 12(19), pages 1-20, October.
    3. Ä°rem Åžanal, 2018. "Discussion on the effectiveness of cement replacement for carbon dioxide (CO2) emission reduction in concrete," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(2), pages 366-378, April.
    4. Hong, Taehoon & Jeong, Kwangbok & Koo, Choongwan, 2018. "An optimized gene expression programming model for forecasting the national CO2 emissions in 2030 using the metaheuristic algorithms," Applied Energy, Elsevier, vol. 228(C), pages 808-820.
    5. Golden Odey & Bashir Adelodun & Sang-Hyun Kim & Kyung-Sook Choi, 2021. "Status of Environmental Life Cycle Assessment (LCA): A Case Study of South Korea," Sustainability, MDPI, vol. 13(11), pages 1-30, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:24:p:16478-:d:998196. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.