IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i23p15827-d986567.html
   My bibliography  Save this article

Research on Urban Distribution Routes Considering the Impact of Vehicle Speed on Carbon Emissions

Author

Listed:
  • Zhiying Yao

    (Logistics Department, Beijing Wuzi University, Beijing 101149, China)

  • Haiqing Cao

    (School of Management and Engineering, Capital University of Economics and Business, Beijing 100070, China)

  • Zhenliang Cui

    (Beijing Ideal Automobile Co., Ltd., Beijing 100039, China)

  • Yuru Wang

    (Logistics Department, Beijing Wuzi University, Beijing 101149, China)

  • Ning Huang

    (Logistics Department, Beijing Wuzi University, Beijing 101149, China)

Abstract

To solve the low-carbon vehicle routing problem (VRP) with sustainable development background, the VRP considering the impact of vehicle speed on carbon emissions is studied. A vehicle routing optimization model aims to minimize the total cost of distribution, penalty cost and carbon emission cost. In the model, the driving time and carbon emissions are calculated on the basis of the varying vehicle speed matching the real road network. Moreover, the improved genetic algorithm is applied to optimize vehicle routing in this paper. Using the Solomon standard datasets, the experimental results validate the carbon emission cost and the total cost from the dynamic road network are lower than those from the static network; furthermore, the carbon emission cost and the total cost from the improved GE algorithm are much lower than those from the general GE algorithm in the dynamic road network. Obviously, the built model and the improved algorithm are more feasible and effective.

Suggested Citation

  • Zhiying Yao & Haiqing Cao & Zhenliang Cui & Yuru Wang & Ning Huang, 2022. "Research on Urban Distribution Routes Considering the Impact of Vehicle Speed on Carbon Emissions," Sustainability, MDPI, vol. 14(23), pages 1-14, November.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:23:p:15827-:d:986567
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/23/15827/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/23/15827/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ehmke, Jan Fabian & Campbell, Ann Melissa & Thomas, Barrett W., 2016. "Vehicle routing to minimize time-dependent emissions in urban areas," European Journal of Operational Research, Elsevier, vol. 251(2), pages 478-494.
    2. Franceschetti, Anna & Honhon, Dorothée & Van Woensel, Tom & Bektaş, Tolga & Laporte, Gilbert, 2013. "The time-dependent pollution-routing problem," Transportation Research Part B: Methodological, Elsevier, vol. 56(C), pages 265-293.
    3. Zhang, Jianghua & Zhao, Yingxue & Xue, Weili & Li, Jin, 2015. "Vehicle routing problem with fuel consumption and carbon emission," International Journal of Production Economics, Elsevier, vol. 170(PA), pages 234-242.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Asghari, Mohammad & Mirzapour Al-e-hashem, S. Mohammad J., 2021. "Green vehicle routing problem: A state-of-the-art review," International Journal of Production Economics, Elsevier, vol. 231(C).
    2. Mohammad Asghari & Seyed Mohammad Javad Mirzapour Al-E-Hashem, 2021. "Green vehicle routing problem: A state-of-the-art review," Post-Print hal-03182944, HAL.
    3. Ehmke, Jan Fabian & Campbell, Ann M. & Thomas, Barrett W., 2018. "Optimizing for total costs in vehicle routing in urban areas," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 116(C), pages 242-265.
    4. Behnke, Martin & Kirschstein, Thomas, 2017. "The impact of path selection on GHG emissions in city logistics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 106(C), pages 320-336.
    5. Brunner, Carlos & Giesen, Ricardo & Klapp, Mathias A. & Flórez-Calderón, Luz, 2021. "Vehicle routing problem with steep roads," Transportation Research Part A: Policy and Practice, Elsevier, vol. 151(C), pages 1-17.
    6. Hui Li & Jian Zhou & Kexin Xu, 2023. "Evolution of Green Vehicle Routing Problem: A Bibliometric and Visualized Review," Sustainability, MDPI, vol. 15(23), pages 1-27, November.
    7. Liu, Yiming & Roberto, Baldacci & Zhou, Jianwen & Yu, Yang & Zhang, Yu & Sun, Wei, 2023. "Efficient feasibility checks and an adaptive large neighborhood search algorithm for the time-dependent green vehicle routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 310(1), pages 133-155.
    8. Behnke, Martin & Kirschstein, Thomas & Bierwirth, Christian, 2021. "A column generation approach for an emission-oriented vehicle routing problem on a multigraph," European Journal of Operational Research, Elsevier, vol. 288(3), pages 794-809.
    9. Nasreddine Ouertani & Hajer Ben-Romdhane & Saoussen Krichen & Issam Nouaouri, 2022. "A vector evaluated evolutionary algorithm with exploitation reinforcement for the dynamic pollution routing problem," Journal of Combinatorial Optimization, Springer, vol. 44(2), pages 1011-1038, September.
    10. Carlos A. Vega-Mejía & Jairo R. Montoya-Torres & Sardar M. N. Islam, 2019. "Consideration of triple bottom line objectives for sustainability in the optimization of vehicle routing and loading operations: a systematic literature review," Annals of Operations Research, Springer, vol. 273(1), pages 311-375, February.
    11. Ozgur Kabadurmus & Mehmet S. Erdogan, 2023. "A green vehicle routing problem with multi-depot, multi-tour, heterogeneous fleet and split deliveries: a mathematical model and heuristic approach," Journal of Combinatorial Optimization, Springer, vol. 45(3), pages 1-29, April.
    12. Huang, Yixiao & Zhao, Lei & Van Woensel, Tom & Gross, Jean-Philippe, 2017. "Time-dependent vehicle routing problem with path flexibility," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 169-195.
    13. Raeesi, Ramin & Zografos, Konstantinos G., 2019. "The multi-objective Steiner pollution-routing problem on congested urban road networks," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 457-485.
    14. Zhang, Shuai & Gajpal, Yuvraj & Appadoo, S.S. & Abdulkader, M.M.S., 2018. "Electric vehicle routing problem with recharging stations for minimizing energy consumption," International Journal of Production Economics, Elsevier, vol. 203(C), pages 404-413.
    15. Sara Ceschia & Luca Di Gaspero & Antonella Meneghetti, 2020. "Extending and Solving the Refrigerated Routing Problem," Energies, MDPI, vol. 13(23), pages 1-24, November.
    16. Bektaş, Tolga & Ehmke, Jan Fabian & Psaraftis, Harilaos N. & Puchinger, Jakob, 2019. "The role of operational research in green freight transportation," European Journal of Operational Research, Elsevier, vol. 274(3), pages 807-823.
    17. Adamo, Tommaso & Gendreau, Michel & Ghiani, Gianpaolo & Guerriero, Emanuela, 2024. "A review of recent advances in time-dependent vehicle routing," European Journal of Operational Research, Elsevier, vol. 319(1), pages 1-15.
    18. Xiao, Yiyong & Zuo, Xiaorong & Huang, Jiaoying & Konak, Abdullah & Xu, Yuchun, 2020. "The continuous pollution routing problem," Applied Mathematics and Computation, Elsevier, vol. 387(C).
    19. Fukasawa, Ricardo & He, Qie & Song, Yongjia, 2016. "A disjunctive convex programming approach to the pollution-routing problem," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 61-79.
    20. Chiang, Wen-Chyuan & Li, Yuyu & Shang, Jennifer & Urban, Timothy L., 2019. "Impact of drone delivery on sustainability and cost: Realizing the UAV potential through vehicle routing optimization," Applied Energy, Elsevier, vol. 242(C), pages 1164-1175.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:23:p:15827-:d:986567. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.