IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i23p6214-d451261.html
   My bibliography  Save this article

Extending and Solving the Refrigerated Routing Problem

Author

Listed:
  • Sara Ceschia

    (DPIA—Polytechnic Department of Engineering and Architecture, University of Udine, Via delle Scienze 206, 33100 Udine, Italy
    All the authors contributed equally to this work.)

  • Luca Di Gaspero

    (DPIA—Polytechnic Department of Engineering and Architecture, University of Udine, Via delle Scienze 206, 33100 Udine, Italy
    All the authors contributed equally to this work.)

  • Antonella Meneghetti

    (DPIA—Polytechnic Department of Engineering and Architecture, University of Udine, Via delle Scienze 206, 33100 Udine, Italy
    All the authors contributed equally to this work.)

Abstract

In recent years, cold food chains have shown an impressive growth, mainly due to customers life style changes. Consequently, the transportation of refrigerated food is becoming a crucial aspect of the chain, aiming at ensuring efficiency and sustainability of the process while keeping a high level of product quality. The recently defined Refrigerated Routing Problem (RRP) consists of finding the optimal delivery tour that minimises the fuel consumption for both the traction and the refrigeration components. The total fuel consumption is related, in a complex way, to the distance travelled, the vehicle load and speed, and the outdoor temperature. All these factors depend, in turn, on the traffic and the climate conditions of the region where deliveries take place and they change during the day and the year. The original RRP has been extended to take into account also the total driving cost and to add the possibility to slow down the deliveries by allowing arbitrarily long waiting times when this is beneficial for the objective function. The new RRP is formulated and solved as both a Mixed Integer Programming and a novel Constraint Programming model. Moreover, a Local Search metaheuristic technique (namely Late Acceptance Hill Climbing), based on a combination of different neighborhood structures, is also proposed. The results obtained by the different solution methods on a set of benchmarks scenarios are compared and discussed.

Suggested Citation

  • Sara Ceschia & Luca Di Gaspero & Antonella Meneghetti, 2020. "Extending and Solving the Refrigerated Routing Problem," Energies, MDPI, vol. 13(23), pages 1-24, November.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:23:p:6214-:d:451261
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/23/6214/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/23/6214/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ehmke, Jan Fabian & Campbell, Ann Melissa & Thomas, Barrett W., 2016. "Vehicle routing to minimize time-dependent emissions in urban areas," European Journal of Operational Research, Elsevier, vol. 251(2), pages 478-494.
    2. Bektas, Tolga & Laporte, Gilbert, 2011. "The Pollution-Routing Problem," Transportation Research Part B: Methodological, Elsevier, vol. 45(8), pages 1232-1250, September.
    3. Ehmke, Jan Fabian & Campbell, Ann M. & Thomas, Barrett W., 2018. "Optimizing for total costs in vehicle routing in urban areas," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 116(C), pages 242-265.
    4. Zanoni, Simone & Zavanella, Lucio, 2012. "Chilled or frozen? Decision strategies for sustainable food supply chains," International Journal of Production Economics, Elsevier, vol. 140(2), pages 731-736.
    5. Koç, Çağrı & Bektaş, Tolga & Jabali, Ola & Laporte, Gilbert, 2014. "The fleet size and mix pollution-routing problem," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 239-254.
    6. Franceschetti, Anna & Honhon, Dorothée & Van Woensel, Tom & Bektaş, Tolga & Laporte, Gilbert, 2013. "The time-dependent pollution-routing problem," Transportation Research Part B: Methodological, Elsevier, vol. 56(C), pages 265-293.
    7. Demir, Emrah & Bektaş, Tolga & Laporte, Gilbert, 2014. "A review of recent research on green road freight transportation," European Journal of Operational Research, Elsevier, vol. 237(3), pages 775-793.
    8. Rong, Aiying & Akkerman, Renzo & Grunow, Martin, 2011. "An optimization approach for managing fresh food quality throughout the supply chain," International Journal of Production Economics, Elsevier, vol. 131(1), pages 421-429, May.
    9. Demir, Emrah & Bektaş, Tolga & Laporte, Gilbert, 2012. "An adaptive large neighborhood search heuristic for the Pollution-Routing Problem," European Journal of Operational Research, Elsevier, vol. 223(2), pages 346-359.
    10. Demir, Emrah & Bektaş, Tolga & Laporte, Gilbert, 2014. "The bi-objective Pollution-Routing Problem," European Journal of Operational Research, Elsevier, vol. 232(3), pages 464-478.
    11. Antonella Meneghetti & Luca Monti, 2015. "Greening the food supply chain: an optimisation model for sustainable design of refrigerated automated warehouses," International Journal of Production Research, Taylor & Francis Journals, vol. 53(21), pages 6567-6587, November.
    12. Damiaan Persyn & Jorge Diaz-Lanchas & Javier Barbero, 2019. "Estimating road transport costs between EU regions," JRC Working Papers on Territorial Modelling and Analysis 2019-04, Joint Research Centre.
    13. Burke, Edmund K. & Bykov, Yuri, 2017. "The late acceptance Hill-Climbing heuristic," European Journal of Operational Research, Elsevier, vol. 258(1), pages 70-78.
    14. Xiao, Yiyong & Konak, Abdullah, 2016. "The heterogeneous green vehicle routing and scheduling problem with time-varying traffic congestion," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 88(C), pages 146-166.
    15. Franceschetti, Anna & Demir, Emrah & Honhon, Dorothée & Van Woensel, Tom & Laporte, Gilbert & Stobbe, Mark, 2017. "A metaheuristic for the time-dependent pollution-routing problem," European Journal of Operational Research, Elsevier, vol. 259(3), pages 972-991.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Runfeng Yu & Lifen Yun & Chen Chen & Yuanjie Tang & Hongqiang Fan & Yi Qin, 2023. "Vehicle Routing Optimization for Vaccine Distribution Considering Reducing Energy Consumption," Sustainability, MDPI, vol. 15(2), pages 1-24, January.
    2. Antonella Meneghetti & Chiara Pagnin & Patrizia Simeoni, 2021. "Decarbonizing the Cold Chain: Long-Haul Refrigerated Deliveries with On-Board Photovoltaic Energy Integration," Sustainability, MDPI, vol. 13(15), pages 1-19, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Asghari, Mohammad & Mirzapour Al-e-hashem, S. Mohammad J., 2021. "Green vehicle routing problem: A state-of-the-art review," International Journal of Production Economics, Elsevier, vol. 231(C).
    2. Mohammad Asghari & Seyed Mohammad Javad Mirzapour Al-E-Hashem, 2021. "Green vehicle routing problem: A state-of-the-art review," Post-Print hal-03182944, HAL.
    3. Ehmke, Jan Fabian & Campbell, Ann M. & Thomas, Barrett W., 2018. "Optimizing for total costs in vehicle routing in urban areas," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 116(C), pages 242-265.
    4. Brunner, Carlos & Giesen, Ricardo & Klapp, Mathias A. & Flórez-Calderón, Luz, 2021. "Vehicle routing problem with steep roads," Transportation Research Part A: Policy and Practice, Elsevier, vol. 151(C), pages 1-17.
    5. Behnke, Martin & Kirschstein, Thomas & Bierwirth, Christian, 2021. "A column generation approach for an emission-oriented vehicle routing problem on a multigraph," European Journal of Operational Research, Elsevier, vol. 288(3), pages 794-809.
    6. Raeesi, Ramin & Zografos, Konstantinos G., 2019. "The multi-objective Steiner pollution-routing problem on congested urban road networks," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 457-485.
    7. Bektaş, Tolga & Ehmke, Jan Fabian & Psaraftis, Harilaos N. & Puchinger, Jakob, 2019. "The role of operational research in green freight transportation," European Journal of Operational Research, Elsevier, vol. 274(3), pages 807-823.
    8. Xiao, Yiyong & Zuo, Xiaorong & Huang, Jiaoying & Konak, Abdullah & Xu, Yuchun, 2020. "The continuous pollution routing problem," Applied Mathematics and Computation, Elsevier, vol. 387(C).
    9. Huang, Yixiao & Zhao, Lei & Van Woensel, Tom & Gross, Jean-Philippe, 2017. "Time-dependent vehicle routing problem with path flexibility," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 169-195.
    10. Fukasawa, Ricardo & He, Qie & Song, Yongjia, 2016. "A disjunctive convex programming approach to the pollution-routing problem," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 61-79.
    11. Liu, Yiming & Roberto, Baldacci & Zhou, Jianwen & Yu, Yang & Zhang, Yu & Sun, Wei, 2023. "Efficient feasibility checks and an adaptive large neighborhood search algorithm for the time-dependent green vehicle routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 310(1), pages 133-155.
    12. Xiao, Yiyong & Konak, Abdullah, 2016. "The heterogeneous green vehicle routing and scheduling problem with time-varying traffic congestion," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 88(C), pages 146-166.
    13. Koç, Çağrı & Bektaş, Tolga & Jabali, Ola & Laporte, Gilbert, 2016. "The impact of depot location, fleet composition and routing on emissions in city logistics," Transportation Research Part B: Methodological, Elsevier, vol. 84(C), pages 81-102.
    14. Soysal, Mehmet & Bloemhof-Ruwaard, Jacqueline M. & Haijema, Rene & van der Vorst, Jack G.A.J., 2015. "Modeling an Inventory Routing Problem for perishable products with environmental considerations and demand uncertainty," International Journal of Production Economics, Elsevier, vol. 164(C), pages 118-133.
    15. Nasreddine Ouertani & Hajer Ben-Romdhane & Saoussen Krichen & Issam Nouaouri, 2022. "A vector evaluated evolutionary algorithm with exploitation reinforcement for the dynamic pollution routing problem," Journal of Combinatorial Optimization, Springer, vol. 44(2), pages 1011-1038, September.
    16. Emna Marrekchi & Walid Besbes & Diala Dhouib & Emrah Demir, 2021. "A review of recent advances in the operations research literature on the green routing problem and its variants," Annals of Operations Research, Springer, vol. 304(1), pages 529-574, September.
    17. Qiu, Rui & Xu, Jiuping & Ke, Ruimin & Zeng, Ziqiang & Wang, Yinhai, 2020. "Carbon pricing initiatives-based bi-level pollution routing problem," European Journal of Operational Research, Elsevier, vol. 286(1), pages 203-217.
    18. Zhang, Shuai & Gajpal, Yuvraj & Appadoo, S.S. & Abdulkader, M.M.S., 2018. "Electric vehicle routing problem with recharging stations for minimizing energy consumption," International Journal of Production Economics, Elsevier, vol. 203(C), pages 404-413.
    19. Sun, Wei & Yu, Yang & Wang, Junwei, 2019. "Heterogeneous vehicle pickup and delivery problems: Formulation and exact solution," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 125(C), pages 181-202.
    20. Yu, Yang & Wu, Yuting & Wang, Junwei, 2019. "Bi-objective green ride-sharing problem: Model and exact method," International Journal of Production Economics, Elsevier, vol. 208(C), pages 472-482.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:23:p:6214-:d:451261. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.