IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i23p15663-d983341.html
   My bibliography  Save this article

Thermal Comfort Prediction Accuracy with Machine Learning between Regression Analysis and Naïve Bayes Classifier

Author

Listed:
  • Hidayatus Sibyan

    (Department of Informatics Engineering, Qur’anic Science University (Universitas Sains Al-Qur’an), Jl. Hasyim Asy’ari Km. 03, Wonosobo 56351, Indonesia)

  • Jozef Svajlenka

    (Department of Construction Technology and Management, Technical University of Košice, 042 00 Košice, Slovakia)

  • Hermawan Hermawan

    (Department of Architecture, Qur’anic Science University (Universitas Sains Al-Qur’an), Jl. Hasyim Asy’ari Km. 03, Wonosobo 56351, Indonesia)

  • Nasyiin Faqih

    (Department of Civil Engineering, Qur’anic Science University (Universitas Sains Al-Qur’an), Jl. Hasyim Asy’ari Km. 03, Wonosobo 56351, Indonesia)

  • Annisa Nabila Arrizqi

    (Department of Civil Engineering, Universitas Islam Indonesia, Jl. Kaliurang Km.14,5, Yogyakarta 55584, Indonesia)

Abstract

Various data analysis methods can make thermal comfort prediction models. One method that is often used is multiple linear regression statistical analysis. Regression analysis needs to be checked for accuracy with other analytical methods. This study compares the making of a thermal comfort prediction model with regression analysis and naïve Bayes analysis. The research method used quantitative methods for data collection regarding thermal comfort. The thermal comfort variable, consisting of eight independent variables and one dependent variable, was measured at Wonosobo High School, Indonesia. The analysis to make the prediction model was carried out with two different analyses: multiple linear regression analysis and naïve Bayes analysis. The results show that naïve Bayes is more accurate than multiple linear regression analysis.

Suggested Citation

  • Hidayatus Sibyan & Jozef Svajlenka & Hermawan Hermawan & Nasyiin Faqih & Annisa Nabila Arrizqi, 2022. "Thermal Comfort Prediction Accuracy with Machine Learning between Regression Analysis and Naïve Bayes Classifier," Sustainability, MDPI, vol. 14(23), pages 1-18, November.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:23:p:15663-:d:983341
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/23/15663/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/23/15663/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang, Shiyu & Wan, Man Pun, 2022. "Machine-learning-based model predictive control with instantaneous linearization – A case study on an air-conditioning and mechanical ventilation system," Applied Energy, Elsevier, vol. 306(PB).
    2. Heidari, Amirreza & Maréchal, François & Khovalyg, Dolaana, 2022. "Reinforcement Learning for proactive operation of residential energy systems by learning stochastic occupant behavior and fluctuating solar energy: Balancing comfort, hygiene and energy use," Applied Energy, Elsevier, vol. 318(C).
    3. Zhang, Wuxia & Wu, Yupeng & Calautit, John Kaiser, 2022. "A review on occupancy prediction through machine learning for enhancing energy efficiency, air quality and thermal comfort in the built environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    4. Elnour, Mariam & Himeur, Yassine & Fadli, Fodil & Mohammedsherif, Hamdi & Meskin, Nader & Ahmad, Ahmad M. & Petri, Ioan & Rezgui, Yacine & Hodorog, Andrei, 2022. "Neural network-based model predictive control system for optimizing building automation and management systems of sports facilities," Applied Energy, Elsevier, vol. 318(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. John Kaiser Calautit & Hassam Nasarullah Chaudhry, 2022. "Sustainable Buildings: Heating, Ventilation, and Air-Conditioning," Energies, MDPI, vol. 15(21), pages 1-5, November.
    2. Liang, Xinbin & Liu, Zhuoxuan & Wang, Jie & Jin, Xinqiao & Du, Zhimin, 2023. "Uncertainty quantification-based robust deep learning for building energy systems considering distribution shift problem," Applied Energy, Elsevier, vol. 337(C).
    3. Muhammad Emad-Ud-Din & Ya Wang, 2023. "Indoor Occupancy Sensing via Networked Nodes (2012–2022): A Review," Future Internet, MDPI, vol. 15(3), pages 1-20, March.
    4. Sabarathinam Srinivasan & Suresh Kumarasamy & Zacharias E. Andreadakis & Pedro G. Lind, 2023. "Artificial Intelligence and Mathematical Models of Power Grids Driven by Renewable Energy Sources: A Survey," Energies, MDPI, vol. 16(14), pages 1-56, July.
    5. Dalia Mohammed Talat Ebrahim Ali & Violeta Motuzienė & Rasa Džiugaitė-Tumėnienė, 2024. "AI-Driven Innovations in Building Energy Management Systems: A Review of Potential Applications and Energy Savings," Energies, MDPI, vol. 17(17), pages 1-35, August.
    6. Chen, Minghao & Sun, Yi & Xie, Zhiyuan & Lin, Nvgui & Wu, Peng, 2023. "An efficient and privacy-preserving algorithm for multiple energy hubs scheduling with federated and matching deep reinforcement learning," Energy, Elsevier, vol. 284(C).
    7. Lei Zhang & Ying Yang, 2023. "Towards Sustainable Energy Systems Considering Unexpected Sports Event Management: Integrating Machine Learning and Optimization Algorithms," Sustainability, MDPI, vol. 15(9), pages 1-16, April.
    8. Yue, Naihua & Caini, Mauro & Li, Lingling & Zhao, Yang & Li, Yu, 2023. "A comparison of six metamodeling techniques applied to multi building performance vectors prediction on gymnasiums under multiple climate conditions," Applied Energy, Elsevier, vol. 332(C).
    9. Petrucci, Andrea & Ayevide, Follivi Kloutse & Buonomano, Annamaria & Athienitis, Andreas, 2023. "Development of energy aggregators for virtual communities: The energy efficiency-flexibility nexus for demand response," Renewable Energy, Elsevier, vol. 215(C).
    10. Chen, Wei-Han & You, Fengqi, 2022. "Sustainable building climate control with renewable energy sources using nonlinear model predictive control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    11. Brown, Sarah & Beausoleil-Morrison, Ian, 2023. "Long-term implementation of a model predictive controller for a hydronic floor heating and cooling system in a highly glazed house in Canada," Applied Energy, Elsevier, vol. 349(C).
    12. Yan, Biao & Yang, Wansheng & He, Fuquan & Zeng, Wenhao, 2023. "Occupant behavior impact in buildings and the artificial intelligence-based techniques and data-driven approach solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    13. Ayas Shaqour & Aya Hagishima, 2022. "Systematic Review on Deep Reinforcement Learning-Based Energy Management for Different Building Types," Energies, MDPI, vol. 15(22), pages 1-27, November.
    14. Abolfazl Mohammadabadi & Samira Rahnama & Alireza Afshari, 2022. "Indoor Occupancy Detection Based on Environmental Data Using CNN-XGboost Model: Experimental Validation in a Residential Building," Sustainability, MDPI, vol. 14(21), pages 1-17, November.
    15. Tostado-Véliz, Marcos & Rezaee Jordehi, Ahmad & Amir Mansouri, Seyed & Jurado, Francisco, 2022. "Day-ahead scheduling of 100% isolated communities under uncertainties through a novel stochastic-robust model," Applied Energy, Elsevier, vol. 328(C).
    16. Chen, Yibo & Gao, Junxi & Yang, Jianzhong & Berardi, Umberto & Cui, Guoyou, 2023. "An hour-ahead predictive control strategy for maximizing natural ventilation in passive buildings based on weather forecasting," Applied Energy, Elsevier, vol. 333(C).
    17. Panagiotis Michailidis & Iakovos Michailidis & Socratis Gkelios & Elias Kosmatopoulos, 2024. "Artificial Neural Network Applications for Energy Management in Buildings: Current Trends and Future Directions," Energies, MDPI, vol. 17(3), pages 1-47, January.
    18. Chen, Minghao & Xie, Zhiyuan & Sun, Yi & Zheng, Shunlin, 2023. "The predictive management in campus heating system based on deep reinforcement learning and probabilistic heat demands forecasting," Applied Energy, Elsevier, vol. 350(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:23:p:15663-:d:983341. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.