IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v15y2023i3p116-d1103794.html
   My bibliography  Save this article

Indoor Occupancy Sensing via Networked Nodes (2012–2022): A Review

Author

Listed:
  • Muhammad Emad-Ud-Din

    (Department of Computer Science and Engineering, Texas A&M University, College Station, TX 77843, USA)

  • Ya Wang

    (Department of Computer Science and Engineering, Texas A&M University, College Station, TX 77843, USA
    J. Mike Walker ‘66 Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843, USA
    Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
    Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA)

Abstract

In the past decade, different sensing mechanisms and algorithms have been developed to detect or estimate indoor occupancy. One of the most recent advancements is using networked sensor nodes to create a more comprehensive occupancy detection system where multiple sensors can identify human presence within more expansive areas while delivering enhanced accuracy compared to a system that relies on stand-alone sensor nodes. The present work reviews the studies from 2012 to 2022 that use networked sensor nodes to detect indoor occupancy, focusing on PIR-based sensors. Methods are compared based on pivotal ADPs that play a significant role in selecting an occupancy detection system for applications such as Health and Safety or occupant comfort. These parameters include accuracy, information requirement, maximum sensor failure and minimum observation rate, and feasible detection area. We briefly describe the overview of occupancy detection criteria used by each study and introduce a metric called “sensor node deployment density” through our analysis. This metric captures the strength of network-level data filtering and fusion algorithms found in the literature. It is hinged on the fact that a robust occupancy estimation algorithm requires a minimal number of nodes to estimate occupancy. This review only focuses on the occupancy estimation models for networked sensor nodes. It thus provides a standardized insight into networked nodes’ occupancy sensing pipelines, which employ data fusion strategies, network-level machine learning algorithms, and occupancy estimation algorithms. This review thus helps determine the suitability of the reviewed methods to a standard set of application areas by analyzing their gaps.

Suggested Citation

  • Muhammad Emad-Ud-Din & Ya Wang, 2023. "Indoor Occupancy Sensing via Networked Nodes (2012–2022): A Review," Future Internet, MDPI, vol. 15(3), pages 1-20, March.
  • Handle: RePEc:gam:jftint:v:15:y:2023:i:3:p:116-:d:1103794
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/15/3/116/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/15/3/116/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shoaib Azizi & Ramtin Rabiee & Gireesh Nair & Thomas Olofsson, 2021. "Effects of Positioning of Multi-Sensor Devices on Occupancy and Indoor Environmental Monitoring in Single-Occupant Offices," Energies, MDPI, vol. 14(19), pages 1-23, October.
    2. Zhang, Wuxia & Wu, Yupeng & Calautit, John Kaiser, 2022. "A review on occupancy prediction through machine learning for enhancing energy efficiency, air quality and thermal comfort in the built environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. John Kaiser Calautit & Hassam Nasarullah Chaudhry, 2022. "Sustainable Buildings: Heating, Ventilation, and Air-Conditioning," Energies, MDPI, vol. 15(21), pages 1-5, November.
    2. Hidayatus Sibyan & Jozef Svajlenka & Hermawan Hermawan & Nasyiin Faqih & Annisa Nabila Arrizqi, 2022. "Thermal Comfort Prediction Accuracy with Machine Learning between Regression Analysis and Naïve Bayes Classifier," Sustainability, MDPI, vol. 14(23), pages 1-18, November.
    3. Yue, Naihua & Caini, Mauro & Li, Lingling & Zhao, Yang & Li, Yu, 2023. "A comparison of six metamodeling techniques applied to multi building performance vectors prediction on gymnasiums under multiple climate conditions," Applied Energy, Elsevier, vol. 332(C).
    4. Aya Nabil Sayed & Faycal Bensaali & Yassine Himeur & Mahdi Houchati, 2023. "Edge-Based Real-Time Occupancy Detection System through a Non-Intrusive Sensing System," Energies, MDPI, vol. 16(5), pages 1-14, March.
    5. Abolfazl Mohammadabadi & Samira Rahnama & Alireza Afshari, 2022. "Indoor Occupancy Detection Based on Environmental Data Using CNN-XGboost Model: Experimental Validation in a Residential Building," Sustainability, MDPI, vol. 14(21), pages 1-17, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:15:y:2023:i:3:p:116-:d:1103794. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.