IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i22p15155-d973800.html
   My bibliography  Save this article

Extreme Positive Indian Ocean Dipole in 2019 and Its Impact on Indonesia

Author

Listed:
  • Iskhaq Iskandar

    (Department of Physics, Faculty of Mathematics and Natural Sciences, Sriwijaya University, Indralaya 30662, Indonesia)

  • Deni Okta Lestari

    (Department of Atmospheric and Planetary Sciences, Sumatra Institute of Technology, Bandar Lampung 35365, Indonesia)

  • Agus Dwi Saputra

    (Department of Physics, Faculty of Mathematics and Natural Sciences, Sriwijaya University, Indralaya 30662, Indonesia)

  • Riza Yuliratno Setiawan

    (Department of Fisheries, Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia)

  • Anindya Wirasatriya

    (Department of Oceanography, Faculty of Fisheries and Marine Sciences, Diponegoro University, Semarang 50275, Indonesia
    Center for Coastal Disaster Mitigation and Rehabilitation Studies, Diponegoro University, Semarang 50275, Indonesia)

  • Raden Dwi Susanto

    (Department of Oceanography, Faculty of Fisheries and Marine Sciences, Diponegoro University, Semarang 50275, Indonesia
    Department of Atmospheric and Oceanic Science, University of Maryland, College Park, MD 20742, USA
    Faculty of Earth Science and Technology, Bandung Institute of Technology, Bandung 40132, Indonesia)

  • Wijaya Mardiansyah

    (Department of Physics, Faculty of Mathematics and Natural Sciences, Sriwijaya University, Indralaya 30662, Indonesia)

  • Muhammad Irfan

    (Department of Physics, Faculty of Mathematics and Natural Sciences, Sriwijaya University, Indralaya 30662, Indonesia)

  • Rozirwan

    (Department of Marine Science, Faculty of Mathematics and Natural Sciences, Sriwijaya University, Indralaya 30662, Indonesia)

  • Joga Dharma Setiawan

    (Center for Coastal Disaster Mitigation and Rehabilitation Studies, Diponegoro University, Semarang 50275, Indonesia)

  • Kunarso

    (Department of Oceanography, Faculty of Fisheries and Marine Sciences, Diponegoro University, Semarang 50275, Indonesia)

Abstract

The evolution of an extreme positive Indian Ocean Dipole (pIOD) that took place in the tropical Indian Ocean during the late boreal summer to early winter of 2019 is examined in terms of coupled ocean–atmosphere dynamics. The patterns of anomalous sea-surface temperature (SST) revealed a typical pIOD characteristic: cooling (warming) in the southeastern (western) tropical Indian Ocean. Based on the Dipole Mode Index (DMI), the evolution of the event started in mid-July and gradually strengthened with an abrupt weakening in early September before coming to its peak in late October/early November. It quickly weakened in November, and then it terminated in mid-December. During the peak phase of the event, the SST anomaly in the southeastern (western) tropical Indian Ocean reached about −2 °C (+1 °C). The pattern of anomalous SST was followed by an anomalous pattern in precipitation, in which deficit precipitation was observed over the eastern Indian Ocean, particularly over the Indonesia region. Earlier study has shown that dry conditions associated with the pIOD event created a favorable condition for a forest-peat fire in southern Sumatra. The number of fire hotspots has increased significantly during the peak phase of the 2019 pIOD event. In addition, anomalously strong upwelling forced by strong southeasterly wind anomalies along the southern coast of Java and Sumatra had induced a surface chlorophyll-a (Chl-a) bloom in this region. High surface Chl-a concentration was collocated with the negative SST anomalies observed off the southwest Sumatra coast and south Java.

Suggested Citation

  • Iskhaq Iskandar & Deni Okta Lestari & Agus Dwi Saputra & Riza Yuliratno Setiawan & Anindya Wirasatriya & Raden Dwi Susanto & Wijaya Mardiansyah & Muhammad Irfan & Rozirwan & Joga Dharma Setiawan & Kun, 2022. "Extreme Positive Indian Ocean Dipole in 2019 and Its Impact on Indonesia," Sustainability, MDPI, vol. 14(22), pages 1-15, November.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:22:p:15155-:d:973800
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/22/15155/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/22/15155/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. N. H. Saji & B. N. Goswami & P. N. Vinayachandran & T. Yamagata, 1999. "A dipole mode in the tropical Indian Ocean," Nature, Nature, vol. 401(6751), pages 360-363, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenju Cai & Yi Liu & Xiaopei Lin & Ziguang Li & Ying Zhang & David Newth, 2024. "Nonlinear country-heterogenous impact of the Indian Ocean Dipole on global economies," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Weiqing Han & Lei Zhang & Gerald A. Meehl & Shoichiro Kido & Tomoki Tozuka & Yuanlong Li & Michael J. McPhaden & Aixue Hu & Anny Cazenave & Nan Rosenbloom & Gary Strand & B. Jason West & Wen Xing, 2022. "Sea level extremes and compounding marine heatwaves in coastal Indonesia," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Nisa Anil & M. R. Ramesh Kumar & R. Sajeev & P. K. Saji, 2016. "Role of distinct flavours of IOD events on Indian summer monsoon," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(2), pages 1317-1326, June.
    4. Akio Kitoh, 2007. "Variability of Indian monsoon-ENSO relationship in a 1000-year MRI-CGCM2.2 simulation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 42(2), pages 261-272, August.
    5. Anni Arumsari Fitriany & Piotr J. Flatau & Khoirunurrofik Khoirunurrofik & Nelly Florida Riama, 2021. "Assessment on the Use of Meteorological and Social Media Information for Forest Fire Detection and Prediction in Riau, Indonesia," Sustainability, MDPI, vol. 13(20), pages 1-13, October.
    6. R. S. Akhila & J. Kuttippurath & R. Rahul & A. Chakraborty, 2022. "Genesis and simultaneous occurrences of the super cyclone Kyarr and extremely severe cyclone Maha in the Arabian Sea in October 2019," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(2), pages 1133-1150, September.
    7. Yadav Prasad Joshi & Eun-Hye Kim & Jong-Hun Kim & Ho Kim & Hae-Kwan Cheong, 2016. "Associations between Meteorological Factors and Aseptic Meningitis in Six Metropolitan Provinces of the Republic of Korea," IJERPH, MDPI, vol. 13(12), pages 1-12, November.
    8. D. Chiru Naik & Sagar Rohidas Chavan & P. Sonali, 2023. "Incorporating the climate oscillations in the computation of meteorological drought over India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(3), pages 2617-2646, July.
    9. Liu, Jin & Li, Rui & Li, Shuo & Meucci, Alberto & Young, Ian R., 2024. "Increasing wave power due to global climate change and intensification of Antarctic Oscillation," Applied Energy, Elsevier, vol. 358(C).
    10. Kavya Johny & Maya L. Pai & S. Adarsh, 2022. "Investigating the multiscale teleconnections of Madden–Julian oscillation and monthly rainfall using time-dependent intrinsic cross-correlation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(2), pages 1795-1822, June.
    11. Luis A. Gil-Alana, 2015. "Linear and segmented trends in sea surface temperature data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(7), pages 1531-1546, July.
    12. David P. Rowell & Catherine A. Senior & Michael Vellinga & Richard J. Graham, 2016. "Can climate projection uncertainty be constrained over Africa using metrics of contemporary performance?," Climatic Change, Springer, vol. 134(4), pages 621-633, February.
    13. K. Sumesh & M. Ramesh Kumar, 2013. "Tropical cyclones over north Indian Ocean during El-Niño Modoki years," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(2), pages 1057-1074, September.
    14. Jiuwei Zhao & Ruifen Zhan & Yuqing Wang & Shang-Ping Xie & Leying Zhang & Mingrui Xu, 2024. "Lapsed El Niño impact on Atlantic and Northwest Pacific tropical cyclone activity in 2023," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    15. Mingna Wu & Tianjun Zhou & Chao Li & Hongmei Li & Xiaolong Chen & Bo Wu & Wenxia Zhang & Lixia Zhang, 2021. "A very likely weakening of Pacific Walker Circulation in constrained near-future projections," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    16. Jong-Hun Kim & Jisun Sung & Ho-Jang Kwon & Hae-Kwan Cheong, 2020. "Effects of El Niño/La Niña on the Number of Imported Shigellosis Cases in the Republic of Korea, 2004–2017," IJERPH, MDPI, vol. 18(1), pages 1-11, December.
    17. Netrananda Sahu & Atul Saini & Swadhin Behera & Takahiro Sayama & Sridhara Nayak & Limonlisa Sahu & Weili Duan & Ram Avtar & Masafumi Yamada & R. B. Singh & Kaoru Takara, 2020. "Impact of Indo-Pacific Climate Variability on Rice Productivity in Bihar, India," Sustainability, MDPI, vol. 12(17), pages 1-21, August.
    18. Omid Alizadeh, 2022. "Advances and challenges in climate modeling," Climatic Change, Springer, vol. 170(1), pages 1-26, January.
    19. S. Karuna Sagar & M. Rajeevan & S. Vijaya Bhaskara Rao, 2017. "On increasing monsoon rainstorms over India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(3), pages 1743-1757, February.
    20. Muhammad Irfan & Erry Koriyanti & Khairul Saleh & Hadi & Sri Safrina & Awaludin & Albertus Sulaiman & Hamdi Akhsan & Suhadi & Rujito Agus Suwignyo & Eunho Choi & Iskhaq Iskandar, 2024. "Dynamics of Peatland Fires in South Sumatra in 2019: Role of Groundwater Levels," Land, MDPI, vol. 13(3), pages 1-15, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:22:p:15155-:d:973800. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.