IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i22p14763-d967756.html
   My bibliography  Save this article

Factors Affecting the International Flight Delays and Their Impact on Airline Operation and Management and Passenger Compensations Fees in Air Transport Industry: Case Study of a Selected Airlines in Europe

Author

Listed:
  • Martina Zámková

    (Department of Mathematics, College of Polytechnics Jihlava, Tolstého 16, 58601 Jihlava, Czech Republic)

  • Stanislav Rojík

    (Department of Economic Studies, College of Polytechnics Jihlava, Tolstého 16, 58601 Jihlava, Czech Republic)

  • Martin Prokop

    (Department of Mathematics, College of Polytechnics Jihlava, Tolstého 16, 58601 Jihlava, Czech Republic)

  • Radek Stolín

    (Department of Mathematics, College of Polytechnics Jihlava, Tolstého 16, 58601 Jihlava, Czech Republic)

Abstract

This paper aims to analyze the causes of flight delays of a selected airline operating in Europe and identify potential risks and reasons for delays in air transport, which carry risk, especially in connection with passenger dissatisfaction and the resulting need to pay compensation for delayed flights, according to EU law, which brings significant financial costs for airlines. Data collected from the years 2013–2019 have been used for the purposes of this article, including data on the duration and causes of the delays and the characteristics of individual flights, such as the flight type, aircraft type, time of departure, aircraft capacity, and the load factor. Multidimensional statistics methods have been applied for data processing, namely tests of independence and correspondence analysis. Dependencies have been presented in graphical form using correspondence maps. The analysis shows that the total share of delayed flights of the company in question does not increase over the mentioned period of time. The analysis furthermore proved that higher capacity aircraft were rather prone to longer delays. The share of delayed charter flights declined slightly over the period under review, while the number of delays caused by airline operating reasons, aircraft clearance by supplier companies, technical maintenance and aircraft defects, operating procedures, and crew flight standards and airport restrictions is increasing. The analysis also shows that the delays propagated by the delays of the previous flights are becoming more frequent, with the exception of the year 2019. In the last pre-COVID year, air traffic control could boast about a positive trend regarding the number of produced delays over the years, contributing to greater air passenger satisfaction and airline service quality. Due to the gradual revival of air transport after the COVID pandemic lockdowns, the topic of flight delays, passenger customer satisfaction and financial costs for the resulting delays is once again an actual issue for air management and operation.

Suggested Citation

  • Martina Zámková & Stanislav Rojík & Martin Prokop & Radek Stolín, 2022. "Factors Affecting the International Flight Delays and Their Impact on Airline Operation and Management and Passenger Compensations Fees in Air Transport Industry: Case Study of a Selected Airlines in ," Sustainability, MDPI, vol. 14(22), pages 1-16, November.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:22:p:14763-:d:967756
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/22/14763/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/22/14763/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Skorupski, Jacek & Wierzbińska, Magdalena, 2015. "A method to evaluate the time of waiting for a late passenger," Journal of Air Transport Management, Elsevier, vol. 47(C), pages 79-89.
    2. Ryerson, Megan S. & Hansen, Mark & Bonn, James, 2014. "Time to burn: Flight delay, terminal efficiency, and fuel consumption in the National Airspace System," Transportation Research Part A: Policy and Practice, Elsevier, vol. 69(C), pages 286-298.
    3. Silke J. Forbes & Mara Lederman & Trevor Tombe, 2015. "Quality Disclosure Programs and Internal Organizational Practices: Evidence from Airline Flight Delays," American Economic Journal: Microeconomics, American Economic Association, vol. 7(2), pages 1-26, May.
    4. Wesonga, Ronald, 2015. "Airport utility stochastic optimization models for air traffic flow management," European Journal of Operational Research, Elsevier, vol. 242(3), pages 999-1007.
    5. Chaug-Ing Hsu & Ching-Cheng Chao & Nai-Wen Hsu, 2015. "Control strategies for departure process delays at airport passenger terminals," Transportation Planning and Technology, Taylor & Francis Journals, vol. 38(2), pages 214-237, March.
    6. Kafle, Nabin & Zou, Bo, 2016. "Modeling flight delay propagation: A new analytical-econometric approach," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 520-542.
    7. Huang, Edward & Mital, Pratik & Goetschalckx, Marc & Wu, Kan, 2016. "Optimal assignment of airport baggage unloading zones to outgoing flights," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 94(C), pages 110-122.
    8. Sai Ho Chung & Hoi Lam Ma & Hing Kai Chan, 2017. "Cascading Delay Risk of Airline Workforce Deployments with Crew Pairing and Schedule Optimization," Risk Analysis, John Wiley & Sons, vol. 37(8), pages 1443-1458, August.
    9. Ivanov, Nikola & Netjasov, Fedja & Jovanović, Radosav & Starita, Stefano & Strauss, Arne, 2017. "Air Traffic Flow Management slot allocation to minimize propagated delay and improve airport slot adherence," Transportation Research Part A: Policy and Practice, Elsevier, vol. 95(C), pages 183-197.
    10. Mazhar Arıkan & Vinayak Deshpande & Milind Sohoni, 2013. "Building Reliable Air-Travel Infrastructure Using Empirical Data and Stochastic Models of Airline Networks," Operations Research, INFORMS, vol. 61(1), pages 45-64, February.
    11. Wojciech Paprocki, 2021. "Virtual Airport Hub—A New Business Model to Reduce GHG Emissions in Continental Air Transport," Sustainability, MDPI, vol. 13(9), pages 1-19, April.
    12. Zhe Liang & Wanpracha Art Chaovalitwongse, 2009. "The Aircraft Maintenance Routing Problem," Springer Optimization and Its Applications, in: Wanpracha Chaovalitwongse & Kevin C. Furman & Panos M. Pardalos (ed.), Optimization and Logistics Challenges in the Enterprise, pages 327-348, Springer.
    13. Wu, Cheng-Lung & Truong, Tiffany, 2014. "Improving the IATA delay data coding system for enhanced data analytics," Journal of Air Transport Management, Elsevier, vol. 40(C), pages 78-85.
    14. Brueckner, Jan K. & Czerny, Achim I. & Gaggero, Alberto A., 2022. "Airline delay propagation: A simple method for measuring its extent and determinants," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 55-71.
    15. Abdelghany, Ahmed & Abdelghany, Khaled & Narasimhan, Ram, 2006. "Scheduling baggage-handling facilities in congested airports," Journal of Air Transport Management, Elsevier, vol. 12(2), pages 76-81.
    16. Gillen, David & Jacquillat, Alexandre & Odoni, Amedeo R., 2016. "Airport demand management: The operations research and economics perspectives and potential synergies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 495-513.
    17. Liu, Wenjing & Zhao, Qiuhong & Delahaye, Daniel, 2022. "Research on slot allocation for airport network in the presence of uncertainty," Journal of Air Transport Management, Elsevier, vol. 104(C).
    18. Ioannis Simaiakis & Hamsa Balakrishnan, 2016. "A Queuing Model of the Airport Departure Process," Transportation Science, INFORMS, vol. 50(1), pages 94-109, February.
    19. AhmadBeygi, Shervin & Cohn, Amy & Guan, Yihan & Belobaba, Peter, 2008. "Analysis of the potential for delay propagation in passenger airline networks," Journal of Air Transport Management, Elsevier, vol. 14(5), pages 221-236.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martina Zámková & Luboš Střelec & Martin Prokop & Radek Stolín, 2021. "Flight Delay Causes at Selected Visegrad Group International Airports," European Journal of Business Science and Technology, Mendel University in Brno, Faculty of Business and Economics, vol. 7(1), pages 91-108.
    2. Li, Chi & Mao, Jianfeng & Li, Lingyi & Wu, Jingxuan & Zhang, Lianmin & Zhu, Jianyu & Pan, Zibin, 2024. "Flight delay propagation modeling: Data, Methods, and Future opportunities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 185(C).
    3. Yu, Bin & Guo, Zhen & Asian, Sobhan & Wang, Huaizhu & Chen, Gang, 2019. "Flight delay prediction for commercial air transport: A deep learning approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 125(C), pages 203-221.
    4. Lonzius, Christopher & Lange, Anne, 2024. "Aircraft routing clusters and their impact on airline delays," Journal of Air Transport Management, Elsevier, vol. 114(C).
    5. Li, Max Z. & Ryerson, Megan S., 2019. "Reviewing the DATAS of aviation research data: Diversity, availability, tractability, applicability, and sources," Journal of Air Transport Management, Elsevier, vol. 75(C), pages 111-130.
    6. Brueckner, Jan K. & Czerny, Achim I. & Gaggero, Alberto A., 2022. "Airline delay propagation: A simple method for measuring its extent and determinants," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 55-71.
    7. Wu, Cheng-Lung & Law, Kristie, 2019. "Modelling the delay propagation effects of multiple resource connections in an airline network using a Bayesian network model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 62-77.
    8. Kenan, Nabil & Jebali, Aida & Diabat, Ali, 2018. "The integrated aircraft routing problem with optional flights and delay considerations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 355-375.
    9. Tan, Xinlong & Jia, Rongwen & Yan, Jia & Wang, Kun & Bian, Lei, 2021. "An Exploratory analysis of flight delay propagation in China," Journal of Air Transport Management, Elsevier, vol. 92(C).
    10. Du, Wen-Bo & Zhang, Ming-Yuan & Zhang, Yu & Cao, Xian-Bin & Zhang, Jun, 2018. "Delay causality network in air transport systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 466-476.
    11. Kim, Myeonghyeon & Bae, Jiheon, 2021. "Modeling the flight departure delay using survival analysis in South Korea," Journal of Air Transport Management, Elsevier, vol. 91(C).
    12. Zhe Zheng & Wenbin Wei & Bo Zou & Minghua Hu, 2020. "How Late Does Your Flight Depart? A Quantile Regression Approach for a Chinese Case Study," Sustainability, MDPI, vol. 12(24), pages 1-16, December.
    13. Kenan, Nabil & Diabat, Ali & Jebali, Aida, 2018. "Codeshare agreements in the integrated aircraft routing problem," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 272-295.
    14. Jingyi Qu & Shixing Wu & Jinjie Zhang, 2023. "Flight Delay Propagation Prediction Based on Deep Learning," Mathematics, MDPI, vol. 11(3), pages 1-24, January.
    15. Martina Zámková & Martin Prokop & Radek Stolín, 2017. "Factors Influencing Flight Delays of a European Airline," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 65(5), pages 1799-1807.
    16. Sismanidou, Athina & Tarradellas, Joan & Suau-Sanchez, Pere, 2022. "The uneven geography of US air traffic delays: Quantifying the impact of connecting passengers on delay propagation," Journal of Transport Geography, Elsevier, vol. 98(C).
    17. Sternberg, Alice & Carvalho, Diego & Murta, Leonardo & Soares, Jorge & Ogasawara, Eduardo, 2016. "An analysis of Brazilian flight delays based on frequent patterns," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 95(C), pages 282-298.
    18. Bombelli, Alessandro & Sallan, Jose Maria, 2023. "Analysis of the effect of extreme weather on the US domestic air network. A delay and cancellation propagation network approach," Journal of Transport Geography, Elsevier, vol. 107(C).
    19. Birolini, Sebastian & Jacquillat, Alexandre, 2023. "Day-ahead aircraft routing with data-driven primary delay predictions," European Journal of Operational Research, Elsevier, vol. 310(1), pages 379-396.
    20. Brueckner, Jan K. & Czerny, Achim I. & Gaggero, Alberto A., 2021. "Airline schedule buffers and flight delays: A discrete model," Economics of Transportation, Elsevier, vol. 26.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:22:p:14763-:d:967756. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.