IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i21p14571-d964536.html
   My bibliography  Save this article

Synthesis, Characterization and Sorption Properties of Biochar, Chitosan and ZnO-Based Binary Composites towards a Cationic Dye

Author

Listed:
  • Hridoy Roy

    (Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh)

  • Md. Shahinoor Islam

    (Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh)

  • Mohammad Tanvir Arifin

    (Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh)

  • Shakhawat H. Firoz

    (Department of Chemistry, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh)

Abstract

Industrial effluents contaminated with different types of organic dyes have become a major concern to environmentalists due to the carcinogenic nature of the dyes, which are harmful to human and aquatic life. In recent years, the treatment of contaminated effluents by natural resources has been proposed as the most sustainable solution for this problem. In this work, Moringa oleifera (M. oleifera) seed-derived biochar composites, e.g., Biochar-Chitosan (BC), Biochar-ZnO (BZ), and Chitosan-ZnO (CZ) were produced and characterized. The synthesized materials were then utilized to adsorb a cationic dye, methylene blue. Spectroscopic analysis of the biochar-based composites revealed that the modification of biochar by chitosan and ZnO introduced different functional and active groups in the biochar surface. Pore development in the structure of biochar nanocomposites was visible in surface morphological images. The derived biochar was fully amorphous and increased crystallinity by the ZnO modification. The obtained surface area varied from 0.90 ± 0.00 to 14.48 ± 1.13 m 2 g −1 for prepared sorbents, where BZ corresponds to the highest and BC corresponds to the lowest surface area, respectively. The basic pH (9) was the most favorable condition for sorption. The sorption reached equilibrium at 90 min. Isotherm revealed the favorability of the Langmuir model over the Freundlich and Temkin models. The highest sorption capacity (~170 mg/g) was found for BC. The BC and BZ showed a 75% increase and 16% decrease in removal due to the chitosan and ZnO modification, respectively. Response surface methodology (RSM) optimization for BC showed similar results to the analytical experiments. The characterization and experimental results prefigure the chemical functionalities as the critical parameter over the surface area for the adsorption process.

Suggested Citation

  • Hridoy Roy & Md. Shahinoor Islam & Mohammad Tanvir Arifin & Shakhawat H. Firoz, 2022. "Synthesis, Characterization and Sorption Properties of Biochar, Chitosan and ZnO-Based Binary Composites towards a Cationic Dye," Sustainability, MDPI, vol. 14(21), pages 1-24, November.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:21:p:14571-:d:964536
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/21/14571/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/21/14571/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Muhammad Suleman & Muhammad Zafar & Ashfaq Ahmed & Muhammad Usman Rashid & Sadiq Hussain & Abdul Razzaq & Nur Atikah Mohidem & Tahir Fazal & Bilal Haider & Young-Kwon Park, 2021. "Castor Leaves-Based Biochar for Adsorption of Safranin from Textile Wastewater," Sustainability, MDPI, vol. 13(12), pages 1-18, June.
    2. A. A. Oyekanmi & Akil Ahmad & Siti Hamidah Mohd Setapar & Mohammed B. Alshammari & Mohammad Jawaid & Marlia Mohd Hanafiah & H. P. S. Abdul Khalil & Ashok Vaseashta, 2021. "Sustainable Durio zibethinus -Derived Biosorbents for Congo Red Removal from Aqueous Solution: Statistical Optimization, Isotherms and Mechanism Studies," Sustainability, MDPI, vol. 13(23), pages 1-19, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. W. A. M. A. N. Illankoon & Chiara Milanese & Anurudda Karunarathna Karunarathna & A. M. Y. W. Alahakoon & Puhulwella G. Rathnasiri & Maria Medina-Llamas & Maria Cristina Collivignarelli & Sabrina Sorl, 2023. "Development of a Dual-Chamber Pyrolizer for Biochar Production from Agricultural Waste in Sri Lanka," Energies, MDPI, vol. 16(4), pages 1-20, February.
    2. Zhichao Shi & Aowen Ma & Yuanhang Chen & Menghan Zhang & Yin Zhang & Na Zhou & Shisuo Fan & Yi Wang, 2023. "The Removal of Tetracycline from Aqueous Solutions Using Peanut Shell Biochars Prepared at Different Pyrolysis Temperatures," Sustainability, MDPI, vol. 15(1), pages 1-15, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nur Atikah Mohidem & Norhashila Hashim & Rosnah Shamsudin & Hasfalina Che Man, 2022. "Rice for Food Security: Revisiting Its Production, Diversity, Rice Milling Process and Nutrient Content," Agriculture, MDPI, vol. 12(6), pages 1-28, May.
    2. Bazla Sarwar & Asad Ullah Khan & Tahir Fazal & Muhammad Aslam & Naeem Akhtar Qaisrani & Ashfaq Ahmed, 2022. "Synthesis of Novel MOF-5 Based BiCoO 3 Photocatalyst for the Treatment of Textile Wastewater," Sustainability, MDPI, vol. 14(19), pages 1-13, October.
    3. Mohsin Raza & Abrar Inayat & Ashfaq Ahmed & Farrukh Jamil & Chaouki Ghenai & Salman R. Naqvi & Abdallah Shanableh & Muhammad Ayoub & Ammara Waris & Young-Kwon Park, 2021. "Progress of the Pyrolyzer Reactors and Advanced Technologies for Biomass Pyrolysis Processing," Sustainability, MDPI, vol. 13(19), pages 1-42, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:21:p:14571-:d:964536. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.