IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i21p14316-d960881.html
   My bibliography  Save this article

Design and Implementation of a Regenerative Mode Electric Vehicle Test Platform for Engineering Education

Author

Listed:
  • Selami Kesler

    (Department of Electric and Electronics Engineering, Faculty of Engineering, Pamukkale University, Pamukkale, Denizli 20160, Turkey)

  • Omer Boyaci

    (Department of Electric and Electronics Engineering, Faculty of Engineering, Pamukkale University, Pamukkale, Denizli 20160, Turkey)

  • Mustafa Tumbek

    (Department of Electric and Electronics Engineering, Faculty of Engineering, Pamukkale University, Pamukkale, Denizli 20160, Turkey)

Abstract

In engineering education, traditional teaching approaches cannot sufficiently help students to learn electric vehicle (EV) concepts. In this study, the design of an educational test setup including all the components and all dynamics of EVs is implemented, and case studies for engineering education with practical applications are discussed. The proposed test and training platform not only provides hands-on experience for engineering students, but also the opportunity for expert users to test their own designed algorithms on the test setup through a computer and human–machine interface device. The aim of the study is to show students the effects of road slope, vehicle weight and energy recovery parameters on a light EV. In this context, five case studies have been carried out by the students, and a survey was conducted with them. The survey results show that the test setup can help them better comprehend any EV system and develop their professional knowledge and skills.

Suggested Citation

  • Selami Kesler & Omer Boyaci & Mustafa Tumbek, 2022. "Design and Implementation of a Regenerative Mode Electric Vehicle Test Platform for Engineering Education," Sustainability, MDPI, vol. 14(21), pages 1-20, November.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:21:p:14316-:d:960881
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/21/14316/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/21/14316/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Feyijimi Adegbohun & Annette von Jouanne & Ben Phillips & Emmanuel Agamloh & Alex Yokochi, 2021. "High Performance Electric Vehicle Powertrain Modeling, Simulation and Validation," Energies, MDPI, vol. 14(5), pages 1-22, March.
    2. Li, Zhenhe & Khajepour, Amir & Song, Jinchun, 2019. "A comprehensive review of the key technologies for pure electric vehicles," Energy, Elsevier, vol. 182(C), pages 824-839.
    3. He, Hongwen & Xiong, Rui & Zhao, Kai & Liu, Zhentong, 2013. "Energy management strategy research on a hybrid power system by hardware-in-loop experiments," Applied Energy, Elsevier, vol. 112(C), pages 1311-1317.
    4. Rosero, Fredy & Fonseca, Natalia & López, José-María & Casanova, Jesús, 2021. "Effects of passenger load, road grade, and congestion level on real-world fuel consumption and emissions from compressed natural gas and diesel urban buses," Applied Energy, Elsevier, vol. 282(PB).
    5. Ming-Hui Chang & Han-Pang Huang & Shu-Wei Chang, 2013. "A New State of Charge Estimation Method for LiFePO 4 Battery Packs Used in Robots," Energies, MDPI, vol. 6(4), pages 1-24, April.
    6. Xu, Yueru & Zheng, Yuan & Yang, Ying, 2021. "On the movement simulations of electric vehicles: A behavioral model-based approach," Applied Energy, Elsevier, vol. 283(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Diana Lemian & Florin Bode, 2022. "Battery-Supercapacitor Energy Storage Systems for Electrical Vehicles: A Review," Energies, MDPI, vol. 15(15), pages 1-13, August.
    2. Sofiane Bacha & Ramzi Saadi & Mohamed Yacine Ayad & Mohamed Sahraoui & Khaled Laadjal & Antonio J. Marques Cardoso, 2023. "Autonomous Electric-Vehicle Control Using Speed Planning Algorithm and Back-Stepping Approach," Energies, MDPI, vol. 16(5), pages 1-26, March.
    3. Xie, Yunkun & Li, Yangyang & Zhao, Zhichao & Dong, Hao & Wang, Shuqian & Liu, Jingping & Guan, Jinhuan & Duan, Xiongbo, 2020. "Microsimulation of electric vehicle energy consumption and driving range," Applied Energy, Elsevier, vol. 267(C).
    4. Sandoval, Cinda & Alvarado, Victor M. & Carmona, Jean-Claude & Lopez Lopez, Guadalupe & Gomez-Aguilar, J.F., 2017. "Energy management control strategy to improve the FC/SC dynamic behavior on hybrid electric vehicles: A frequency based distribution," Renewable Energy, Elsevier, vol. 105(C), pages 407-418.
    5. Chen, Jie & Wang, Ruochen & Ding, Renkai & Luo, Ding, 2024. "Matching design and numerical optimization of automotive thermoelectric generator system applied to range-extended electric vehicle," Applied Energy, Elsevier, vol. 370(C).
    6. Feiyu Hou & Fei Yao & Zheng Li, 2022. "A Torque-Compensated Fault-Tolerant Control Method for Electric Vehicle Traction Motor with Short-Circuit Fault," Sustainability, MDPI, vol. 14(21), pages 1-17, October.
    7. Xiong, Rui & Duan, Yanzhou & Cao, Jiayi & Yu, Quanqing, 2018. "Battery and ultracapacitor in-the-loop approach to validate a real-time power management method for an all-climate electric vehicle," Applied Energy, Elsevier, vol. 217(C), pages 153-165.
    8. Wang, Bin & Xu, Jun & Cao, Binggang & Ning, Bo, 2017. "Adaptive mode switch strategy based on simulated annealing optimization of a multi-mode hybrid energy storage system for electric vehicles," Applied Energy, Elsevier, vol. 194(C), pages 596-608.
    9. Piotr Pryciński & Piotr Pielecha & Jarosław Korzeb & Jacek Pielecha & Mariusz Kostrzewski & Ahmed Eliwa, 2024. "Air Pollutant Emissions of Passenger Cars in Poland in Terms of Their Environmental Impact and Type of Energy Consumption," Energies, MDPI, vol. 17(21), pages 1-21, October.
    10. Xinyuan Chen & Ruyang Yin & Qinhe An & Yuan Zhang, 2021. "Modeling a Distance-Based Preferential Fare Scheme for Park-and-Ride Services in a Multimodal Transport Network," Sustainability, MDPI, vol. 13(5), pages 1-14, March.
    11. He, Hongwen & Xiong, Rui & Peng, Jiankun, 2016. "Real-time estimation of battery state-of-charge with unscented Kalman filter and RTOS μCOS-II platform," Applied Energy, Elsevier, vol. 162(C), pages 1410-1418.
    12. F. Isorna Llerena & E. López González & J. J. Caparrós Mancera & F. Segura Manzano & J. M. Andújar, 2021. "Hydrogen vs. Battery-Based Propulsion Systems in Unipersonal Vehicles—Developing Solutions to Improve the Sustainability of Urban Mobility," Sustainability, MDPI, vol. 13(10), pages 1-16, May.
    13. Jie Hu & Wentong Cao & Feng Jiang & Lingling Hu & Qian Chen & Weiguang Zheng & Junming Zhou, 2023. "Study on Multi-Objective Optimization of Power System Parameters of Battery Electric Vehicles," Sustainability, MDPI, vol. 15(10), pages 1-23, May.
    14. Hu, Xiaosong & Feng, Fei & Liu, Kailong & Zhang, Lei & Xie, Jiale & Liu, Bo, 2019. "State estimation for advanced battery management: Key challenges and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    15. Yi Zhang & Qiang Guo & Jie Song, 2023. "Internet-Distributed Hardware-in-the-Loop Simulation Platform for Plug-In Fuel Cell Hybrid Vehicles," Energies, MDPI, vol. 16(18), pages 1-17, September.
    16. Yossi Hadad & Baruch Keren & Dima Alberg, 2023. "An Expert System for Ranking and Matching Electric Vehicles to Customer Specifications and Requirements," Energies, MDPI, vol. 16(11), pages 1-18, May.
    17. Hicham El Hadraoui & Mourad Zegrari & Fatima-Ezzahra Hammouch & Nasr Guennouni & Oussama Laayati & Ahmed Chebak, 2022. "Design of a Customizable Test Bench of an Electric Vehicle Powertrain for Learning Purposes Using Model-Based System Engineering," Sustainability, MDPI, vol. 14(17), pages 1-22, September.
    18. Pla, Benjamín & Bares, Pau & Aronis, André Nakaema & Anuratha, Sanjith, 2024. "Leveraging battery electric vehicle energy storage potential for home energy saving by model predictive control with backward induction," Applied Energy, Elsevier, vol. 372(C).
    19. Cuma, Mehmet Ugras & Koroglu, Tahsin, 2015. "A comprehensive review on estimation strategies used in hybrid and battery electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 517-531.
    20. Chen, Yuanyi & Hu, Simon & Zheng, Yanchong & Xie, Shiwei & Hu, Qinru & Yang, Qiang, 2024. "Coordinated expansion planning of coupled power and transportation networks considering dynamic network equilibrium," Applied Energy, Elsevier, vol. 360(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:21:p:14316-:d:960881. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.