IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i21p14037-d955857.html
   My bibliography  Save this article

Hydrogen Purification by Pressure Swing Adsorption: High-Pressure PSA Performance in Recovery from Seasonal Storage

Author

Listed:
  • Viktor Kalman

    (Thermal Process Engineering, Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Getreidemarkt 9/166, 1060 Vienna, Austria)

  • Johannes Voigt

    (Thermal Process Engineering, Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Getreidemarkt 9/166, 1060 Vienna, Austria)

  • Christian Jordan

    (Thermal Process Engineering, Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Getreidemarkt 9/166, 1060 Vienna, Austria)

  • Michael Harasek

    (Thermal Process Engineering, Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Getreidemarkt 9/166, 1060 Vienna, Austria)

Abstract

Hydrogen storage in a depleted gas field is a promising solution to the seasonal storage of renewable energy, a key question in Europe’s green transition. The gas composition and pressure in the month-long storage and recovery phase can vary substantially; meanwhile, the recovered H 2 has to be pure, especially for fuel cell applications. Pressure swing adsorption can be used for the purification of the recovered gas. A lab-scale, four-bed PSA unit was built to investigate its applicability by separating different H 2 -CH 4 mixtures. The feed parameters in the experiments are based on a depleted gas reservoir with a pressure range of 25–60 bar and methane contamination between 0 and 35%. The change in the feed properties is modeled by four distinct stages and the twelve-step cycle is tailored to each stage. The high pressure did not have any irreversible effects on the process. A hydrogen purity of 99.95% was achieved in all stages with the average hydrogen recovery ranging from 60 to 80%. The experiments revealed the challenges of a cycle design when the feed parameters are not constant, but an adequate separation performance was shown, which supports the applicability of the PSA in seasonal storage and confirms the need for further investigation with multicomponent contaminants and large-scale projects.

Suggested Citation

  • Viktor Kalman & Johannes Voigt & Christian Jordan & Michael Harasek, 2022. "Hydrogen Purification by Pressure Swing Adsorption: High-Pressure PSA Performance in Recovery from Seasonal Storage," Sustainability, MDPI, vol. 14(21), pages 1-16, October.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:21:p:14037-:d:955857
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/21/14037/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/21/14037/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Maria Portarapillo & Almerinda Di Benedetto, 2021. "Risk Assessment of the Large-Scale Hydrogen Storage in Salt Caverns," Energies, MDPI, vol. 14(10), pages 1-12, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barbara Uliasz-Misiak & Joanna Lewandowska-Śmierzchalska & Rafał Matuła & Radosław Tarkowski, 2022. "Prospects for the Implementation of Underground Hydrogen Storage in the EU," Energies, MDPI, vol. 15(24), pages 1-17, December.
    2. Gianpiero Colangelo & Gianluigi Spirto & Marco Milanese & Arturo de Risi, 2021. "Progresses in Analytical Design of Distribution Grids and Energy Storage," Energies, MDPI, vol. 14(14), pages 1-43, July.
    3. Huaguang Yan & Wenda Zhang & Jiandong Kang & Tiejiang Yuan, 2023. "The Necessity and Feasibility of Hydrogen Storage for Large-Scale, Long-Term Energy Storage in the New Power System in China," Energies, MDPI, vol. 16(13), pages 1-21, June.
    4. Ewelina Pawelczyk & Natalia Łukasik & Izabela Wysocka & Andrzej Rogala & Jacek Gębicki, 2022. "Recent Progress on Hydrogen Storage and Production Using Chemical Hydrogen Carriers," Energies, MDPI, vol. 15(14), pages 1-34, July.
    5. Barbara Uliasz-Misiak & Joanna Lewandowska-Śmierzchalska & Rafał Matuła, 2021. "Selection of Underground Hydrogen Storage Risk Assessment Techniques," Energies, MDPI, vol. 14(23), pages 1-13, December.
    6. Dawid Gajda & Marcin Lutyński, 2022. "Permeability Modeling and Estimation of Hydrogen Loss through Polymer Sealing Liners in Underground Hydrogen Storage," Energies, MDPI, vol. 15(7), pages 1-11, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:21:p:14037-:d:955857. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.