IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i21p13891-d953517.html
   My bibliography  Save this article

IoMT-Based Automated Diagnosis of Autoimmune Diseases Using MultiStage Classification Scheme for Sustainable Smart Cities

Author

Listed:
  • Divya Biligere Shivanna

    (Department of Computer Science and Engineering, M. S. Ramaiah University of Applied Sciences, Bengaluru 560054, Karnataka, India)

  • Thompson Stephan

    (Department of Computer Science and Engineering, M. S. Ramaiah University of Applied Sciences, Bengaluru 560054, Karnataka, India)

  • Fadi Al-Turjman

    (Artificial Intelligence Engineering Department, AI and Robotics Institute, Near East University, Mersin 10, 99010 Nicosia, Turkey)

  • Manjur Kolhar

    (Department of Computer Science, College of Arts and Science, Prince Sattam Bin Abdulaziz University, Al-Kharj 11990, Saudi Arabia)

  • Sinem Alturjman

    (Research Center for AI and IoT, Faculty of Engineering, University of Kyrenia, Mersin 10, 99320 Kyrenia, Turkey)

Abstract

The resolution of complex medical diagnoses using pattern recognition requires an artificial neural network-based expert system to automate autoimmune disease diagnosis in blood samples. This process is done using image-based computer-aided diagnosis (CAD) to reduce errors in the diagnosis process. This paper describes a Multistage Classification Scheme (MSCS), which uses antinuclear antibody (ANA) tests to identify and classify the existence of autoantibodies in the blood serum that bind to antigens found in the nuclei of mammalian cells. The MSCS classified HEp-2 cells into three stages by using Binary Tree (BT), Artificial Neural Network (ANN), and Support Vector Machine (SVM) as basic blocks. The Indirect Immunofluorescence (IIF) technique is used in the ANA test with Human Epithelial type-2 (HEp-2) cells as substrates. The efficiency of the proposed methodology is assessed using the dataset of ICPR 2016. The intermediate cells (IMC) and positive cells (PC) were separated in Stage 1 prior to preprocessing based on their total strength, and special preprocessing is applied to intermediate cells for improved output, and positive cells are subjected to mild preprocessing. The mean class accuracy (MCA) was 84.9% for intermediate cells and 95.8% for positive cells, although the carefully picked 24 features and SVM classifier were applied. ANN showed better performance by adjusting the weights using the SCGBP algorithm. So, the MCA is 88.4% and 97.1% for intermediate and positive cells, respectively. BT had an MCA of 95.3% for intermediate and 98.6% for positive. In Stage 2, the meta learners BT2, ANN2, and SVM2 were trained for an augmented feature set (24 + 3 results from base learners). Therefore, the performance of BT2, ANN2, and SV M2 was increased by 1.8%, 4.5%, and 4.1% as compared to Stage 1. In Stage 3, the final prediction was performed by majority voting among the results of the three meta learners to achieve 99.1% MCA. The proposed algorithm can be embedded into a CAD framework built for the ANA examination. The proposed model will improve operational efficiency, decrease medical expenses, expand accessibility to healthcare, and improve patient safety in the sector, enabling enterprises to lower unplanned downtime, develop new products or services, increase operational effectiveness, and enhance risk management.

Suggested Citation

  • Divya Biligere Shivanna & Thompson Stephan & Fadi Al-Turjman & Manjur Kolhar & Sinem Alturjman, 2022. "IoMT-Based Automated Diagnosis of Autoimmune Diseases Using MultiStage Classification Scheme for Sustainable Smart Cities," Sustainability, MDPI, vol. 14(21), pages 1-15, October.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:21:p:13891-:d:953517
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/21/13891/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/21/13891/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Taher M. Ghazal & Mohammad Kamrul Hasan & Muhammad Turki Alshurideh & Haitham M. Alzoubi & Munir Ahmad & Syed Shehryar Akbar & Barween Al Kurdi & Iman A. Akour, 2021. "IoT for Smart Cities: Machine Learning Approaches in Smart Healthcare—A Review," Future Internet, MDPI, vol. 13(8), pages 1-19, August.
    2. Abdel-Basset, Mohamed & Chang, Victor & Nabeeh, Nada A., 2021. "An intelligent framework using disruptive technologies for COVID-19 analysis," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yehia Ibrahim Alzoubi & Ahmad Al-Ahmad & Hasan Kahtan & Ashraf Jaradat, 2022. "Internet of Things and Blockchain Integration: Security, Privacy, Technical, and Design Challenges," Future Internet, MDPI, vol. 14(7), pages 1-48, July.
    2. Yoganathan, Vignesh & Osburg, Victoria-Sophie, 2024. "Heterogenous evaluations of autonomous vehicle services: An extended theoretical framework and empirical evidence," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
    3. Alper Ozpinar, 2023. "A Hyper-Integrated Mobility as a Service (MaaS) to Gamification and Carbon Market Enterprise Architecture Framework for Sustainable Environment," Energies, MDPI, vol. 16(5), pages 1-22, March.
    4. Rubbio, Iacopo & Bruccoleri, Manfredi, 2023. "Unfolding the relationship between digital health and patient safety: The roles of absorptive capacity and healthcare resilience," Technological Forecasting and Social Change, Elsevier, vol. 195(C).
    5. Ayesha Amjad & Piotr Kordel & Gabriela Fernandes, 2023. "A Review on Innovation in Healthcare Sector (Telehealth) through Artificial Intelligence," Sustainability, MDPI, vol. 15(8), pages 1-24, April.
    6. Basile, L.J. & Carbonara, N. & Panniello, U. & Pellegrino, R., 2024. "The role of big data analytics in improving the quality of healthcare services in the Italian context: The mediating role of risk management," Technovation, Elsevier, vol. 133(C).
    7. Amit Sundas & Sumit Badotra & Salil Bharany & Ahmad Almogren & Elsayed M. Tag-ElDin & Ateeq Ur Rehman, 2022. "HealthGuard: An Intelligent Healthcare System Security Framework Based on Machine Learning," Sustainability, MDPI, vol. 14(19), pages 1-16, September.
    8. Chiarello, Filippo & Fantoni, Gualtiero & Hogarth, Terence & Giordano, Vito & Baltina, Liga & Spada, Irene, 2021. "Towards ESCO 4.0 – Is the European classification of skills in line with Industry 4.0? A text mining approach," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    9. Dang, Ngoc Bich & Bertrandias, Laurent, 2023. "Social robots as healing aids: How and why powerlessness influences the intention to adopt social robots," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
    10. Ante, Lennart & Fiedler, Ingo & Strehle, Elias, 2021. "The impact of transparent money flows: Effects of stablecoin transfers on the returns and trading volume of Bitcoin," Technological Forecasting and Social Change, Elsevier, vol. 170(C).
    11. Urmila Pilania & Rohit Tanwar & Mazdak Zamani & Azizah Abdul Manaf, 2022. "Framework for Video Steganography Using Integer Wavelet Transform and JPEG Compression," Future Internet, MDPI, vol. 14(9), pages 1-16, August.
    12. Caselli, Mauro & Fracasso, Andrea, 2021. "Covid-19 and Technology," GLO Discussion Paper Series 1001, Global Labor Organization (GLO).
    13. Tariq Ahamed Ahanger & Fadl Dahan & Usman Tariq & Imdad Ullah, 2022. "Quantum Inspired Task Optimization for IoT Edge Fog Computing Environment," Mathematics, MDPI, vol. 11(1), pages 1-28, December.
    14. Salma Benchekroun & V. G. Venkatesh & Ilham Dkhissi & D. Jinil Persis & Arunmozhi Manimuthu & M. Suresh & V. Raja Sreedharan, 2023. "Managing the retail operations in the COVID‐19 pandemic: Evidence from Morocco," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 44(1), pages 424-447, January.
    15. Caselli, Mauro & Fracasso, Andrea & Traverso, Silvio, 2021. "Robots and risk of COVID-19 workplace contagion: Evidence from Italy," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    16. Sarantis Kalafatidis & Sotiris Skaperas & Vassilis Demiroglou & Lefteris Mamatas & Vassilis Tsaoussidis, 2022. "Logically-Centralized SDN-Based NDN Strategies for Wireless Mesh Smart-City Networks," Future Internet, MDPI, vol. 15(1), pages 1-21, December.
    17. Ávila-Robinson, Alfonso & Islam, Nazrul & Sengoku, Shintaro, 2022. "Exploring the knowledge base of innovation research: Towards an emerging innovation model," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    18. Shaygan, Amir & Daim, Tugrul, 2023. "Technology management maturity assessment model in healthcare research centers," Technovation, Elsevier, vol. 120(C).
    19. Jin Sung Rha & Hong-Hee Lee, 2022. "Research trends in digital transformation in the service sector: a review based on network text analysis," Service Business, Springer;Pan-Pacific Business Association, vol. 16(1), pages 77-98, March.
    20. Prabh Deep Singh & Rajbir Kaur & Kiran Deep Singh & Gaurav Dhiman, 2021. "A Novel Ensemble-based Classifier for Detecting the COVID-19 Disease for Infected Patients," Information Systems Frontiers, Springer, vol. 23(6), pages 1385-1401, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:21:p:13891-:d:953517. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.