IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i8p6655-d1123642.html
   My bibliography  Save this article

A Review on Innovation in Healthcare Sector (Telehealth) through Artificial Intelligence

Author

Listed:
  • Ayesha Amjad

    (Faculty of Organization and Management, Silesian University of Technology, 44-100 Gliwice, Poland
    CEMMPRE, Department of Mechanical Engineering, University of Coimbra, Polo II, 3030-788 Coimbra, Portugal)

  • Piotr Kordel

    (Faculty of Organization and Management, Silesian University of Technology, 44-100 Gliwice, Poland)

  • Gabriela Fernandes

    (CEMMPRE, Department of Mechanical Engineering, University of Coimbra, Polo II, 3030-788 Coimbra, Portugal)

Abstract

Artificial intelligence (AI) has entered the mainstream as computing power has improved. The healthcare industry is undergoing dramatic transformations at present. One of the most recent industries to heavily use AI is telehealth, which is used for anything from issuing electronic healthcare cards to providing individual counselling. Artificial intelligence (AI) is influencing telehealth in the United States in a major way. Using AI in telehealth to allow clinicians to make real-time, data-driven rich choices is critical to offering a better patient experience and improved health outcomes as practitioners strive toward expanding virtual care options along the care continuum. Research in the medical industry has started to use AI’s strengths in data processing and analysis in telehealth, reflecting the widespread adoption of AI in other sectors. Because of the difficulties inherent in telemedicine’s deployment, there is an urgent need to broaden its capabilities and enhance its processes so that they may be tailored to address particular issues. This article is aimed to study different areas of telemedicine and analyze the effect of AI in the field of health and medicine. The literature surveyed in this study demonstrates the infinite growth potential afforded by the combination of AI and telemedicine. There are four main directions that the expanding use of this technology is heading: patient monitoring, healthcare IT, intelligent aid in diagnosis, and information analysis with other specialists.

Suggested Citation

  • Ayesha Amjad & Piotr Kordel & Gabriela Fernandes, 2023. "A Review on Innovation in Healthcare Sector (Telehealth) through Artificial Intelligence," Sustainability, MDPI, vol. 15(8), pages 1-24, April.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:8:p:6655-:d:1123642
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/8/6655/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/8/6655/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yudong Zhang & Saeed Balochian & Praveen Agarwal & Vishal Bhatnagar & Orwa Jaber Housheya, 2014. "Artificial Intelligence and Its Applications," Mathematical Problems in Engineering, Hindawi, vol. 2014, pages 1-10, April.
    2. Abdel-Basset, Mohamed & Chang, Victor & Nabeeh, Nada A., 2021. "An intelligent framework using disruptive technologies for COVID-19 analysis," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    3. Zirar, Araz & Ali, Syed Imran & Islam, Nazrul, 2023. "Worker and workplace Artificial Intelligence (AI) coexistence: Emerging themes and research agenda," Technovation, Elsevier, vol. 124(C).
    4. Wang, Yichuan & Hajli, Nick, 2017. "Exploring the path to big data analytics success in healthcare," Journal of Business Research, Elsevier, vol. 70(C), pages 287-299.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xian Gao & Peixiong He & Yi Zhou & Xiao Qin, 2024. "Artificial Intelligence Applications in Smart Healthcare: A Survey," Future Internet, MDPI, vol. 16(9), pages 1-32, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adilson Carlos Yoshikuni & José Eduardo Ricciardi Favaretto & Alberto Luiz Albertin & Fernando de Souza Meirelles, 2022. "How can Strategy-as-Practice Enable Innovation under the Influence of Environmental Dynamism?," RAC - Revista de Administração Contemporânea (Journal of Contemporary Administration), ANPAD - Associação Nacional de Pós-Graduação e Pesquisa em Administração, vol. 26(1), pages 200131-2001.
    2. de Camargo Fiorini, Paula & Roman Pais Seles, Bruno Michel & Chiappetta Jabbour, Charbel Jose & Barberio Mariano, Enzo & de Sousa Jabbour, Ana Beatriz Lopes, 2018. "Management theory and big data literature: From a review to a research agenda," International Journal of Information Management, Elsevier, vol. 43(C), pages 112-129.
    3. Alaassar, Ahmad & Mention, Anne-Laure & Aas, Tor Helge, 2021. "Exploring a new incubation model for FinTechs: Regulatory sandboxes," Technovation, Elsevier, vol. 103(C).
    4. Shrestha, Yash Raj & Krishna, Vaibhav & von Krogh, Georg, 2021. "Augmenting organizational decision-making with deep learning algorithms: Principles, promises, and challenges," Journal of Business Research, Elsevier, vol. 123(C), pages 588-603.
    5. Olimpia Ban & Irina Maiorescu & Mihaela Bucur & Gabriel Cristian Sabou & Betty Cohen Tzedec, 2024. "AI between Threat and Benefactor for the Competences of the Human Working Force," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 26(67), pages 762-762, August.
    6. Yu, Wantao & Zhao, Gen & Liu, Qi & Song, Yongtao, 2021. "Role of big data analytics capability in developing integrated hospital supply chains and operational flexibility: An organizational information processing theory perspective," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    7. Sudhanshu Joshi & Manu Sharma & Rashmi Prava Das & Joanna Rosak-Szyrocka & Justyna Żywiołek & Kamalakanta Muduli & Mukesh Prasad, 2022. "Modeling Conceptual Framework for Implementing Barriers of AI in Public Healthcare for Improving Operational Excellence: Experiences from Developing Countries," Sustainability, MDPI, vol. 14(18), pages 1-23, September.
    8. Yoganathan, Vignesh & Osburg, Victoria-Sophie, 2024. "Heterogenous evaluations of autonomous vehicle services: An extended theoretical framework and empirical evidence," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
    9. Claus Zippel & Sabine Bohnet-Joschko, 2021. "Rise of Clinical Studies in the Field of Machine Learning: A Review of Data Registered in ClinicalTrials.gov," IJERPH, MDPI, vol. 18(10), pages 1-14, May.
    10. Rubbio, Iacopo & Bruccoleri, Manfredi, 2023. "Unfolding the relationship between digital health and patient safety: The roles of absorptive capacity and healthcare resilience," Technological Forecasting and Social Change, Elsevier, vol. 195(C).
    11. Basile, L.J. & Carbonara, N. & Panniello, U. & Pellegrino, R., 2024. "The role of big data analytics in improving the quality of healthcare services in the Italian context: The mediating role of risk management," Technovation, Elsevier, vol. 133(C).
    12. Chiarello, Filippo & Fantoni, Gualtiero & Hogarth, Terence & Giordano, Vito & Baltina, Liga & Spada, Irene, 2021. "Towards ESCO 4.0 – Is the European classification of skills in line with Industry 4.0? A text mining approach," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    13. Dang, Ngoc Bich & Bertrandias, Laurent, 2023. "Social robots as healing aids: How and why powerlessness influences the intention to adopt social robots," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
    14. Ante, Lennart & Fiedler, Ingo & Strehle, Elias, 2021. "The impact of transparent money flows: Effects of stablecoin transfers on the returns and trading volume of Bitcoin," Technological Forecasting and Social Change, Elsevier, vol. 170(C).
    15. Thompson, Alex & Stringfellow, Lindsay & Maclean, Mairi & Nazzal, Amal, 2021. "Ethical considerations and challenges for using digital ethnography to research vulnerable populations," Journal of Business Research, Elsevier, vol. 124(C), pages 676-683.
    16. Nan Wang & Baolian Chen & Liya Wang & Zhenzhong Ma & Shan Pan, 2024. "Big data analytics capability and social innovation: the mediating role of knowledge exploration and exploitation," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-18, December.
    17. Caselli, Mauro & Fracasso, Andrea, 2021. "Covid-19 and Technology," GLO Discussion Paper Series 1001, Global Labor Organization (GLO).
    18. Hani Bani-Salameh & Mona Al-Qawaqneh & Salah Taamneh, 2021. "Investigating the Adoption of Big Data Management in Healthcare in Jordan," Data, MDPI, vol. 6(2), pages 1-16, February.
    19. Salma Benchekroun & V. G. Venkatesh & Ilham Dkhissi & D. Jinil Persis & Arunmozhi Manimuthu & M. Suresh & V. Raja Sreedharan, 2023. "Managing the retail operations in the COVID‐19 pandemic: Evidence from Morocco," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 44(1), pages 424-447, January.
    20. Purva Grover & Arpan Kumar Kar, 2017. "Big Data Analytics: A Review on Theoretical Contributions and Tools Used in Literature," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 18(3), pages 203-229, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:8:p:6655-:d:1123642. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.