IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i20p13286-d943694.html
   My bibliography  Save this article

Energy Trading on a Peer-to-Peer Basis between Virtual Power Plants Using Decentralized Finance Instruments

Author

Listed:
  • Serkan Seven

    (Department of Software Engineering, Abdullah Gul University, Kayseri 38080, Turkey)

  • Yeliz Yoldas

    (Department of Software Engineering, Kayseri University, Kayseri 38080, Turkey)

  • Ahmet Soran

    (TRK Technology R&D, Ankara 06800, Turkey)

  • Gulay Yalcin Alkan

    (Department of Computer Engineering, Abdullah Gul University, Kayseri 38080, Turkey)

  • Jaesung Jung

    (Department of Energy Systems Research, Ajou University, Suwon 16499, Korea)

  • Taha Selim Ustun

    (Fukushima Renewable Energy Institute, AIST (FREA), Koriyama 963-0298, Japan)

  • Ahmet Onen

    (Department of Electrical-Electronic Engineering, Abdullah Gül University, Kayseri 38080, Turkey
    Department of Electrical and Computer Engineering, College of Engineering, Sultan Qaboos University, Al-Khoud, Muscat 123, Oman)

Abstract

Over time, distribution systems have begun to include increased distributed energy resources (DERs) due to the advancement of auxiliary power electronics, information and communication technologies (ICT), and cost reductions. Electric vehicles (EVs) will undoubtedly join the energy community alongside DERs, and energy transfers from vehicles to grids and vice versa will become more extensive in the future. Virtual power plants (VPPs) will also play a key role in integrating these systems and participating in wholesale markets. Energy trading on a peer-to-peer (P2P) basis is a promising business model for transactive energy that aids in balancing local supply and demand. Moreover, a market scheme between VPPs can help DER owners make more profit while reducing renewable energy waste. For this purpose, an inter-VPP P2P trading scheme is proposed. The scheme utilizes cutting-edge technologies of the Avalanche blockchain platform, developed from scratch with decentralized finance (DeFi), decentralized applications (DApps), and Web3 workflows in mind. Avalanche is more scalable and has faster transaction finality than its layer-1 predecessors. It provides interoperability abilities among other common blockchain networks, facilitating inter-VPP P2P trading between different blockchain-based VPPs. The merits of DeFi contribute significantly to the workflow in this type of energy trading scenario, as the price mechanism can be determined using open market-like instruments. A detailed case study was used to examine the effectiveness of the proposed scheme and flow, and important conclusions were drawn.

Suggested Citation

  • Serkan Seven & Yeliz Yoldas & Ahmet Soran & Gulay Yalcin Alkan & Jaesung Jung & Taha Selim Ustun & Ahmet Onen, 2022. "Energy Trading on a Peer-to-Peer Basis between Virtual Power Plants Using Decentralized Finance Instruments," Sustainability, MDPI, vol. 14(20), pages 1-16, October.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:20:p:13286-:d:943694
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/20/13286/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/20/13286/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gourisetti, Sri Nikhil Gupta & Sebastian-Cardenas, D. Jonathan & Bhattarai, Bishnu & Wang, Peng & Widergren, Steve & Borkum, Mark & Randall, Alysha, 2021. "Blockchain smart contract reference framework and program logic architecture for transactive energy systems," Applied Energy, Elsevier, vol. 304(C).
    2. Yue Wu & Junxiang Li & Jin Gao, 2021. "Real-Time Bidding Model of Cryptocurrency Energy Trading Platform," Energies, MDPI, vol. 14(21), pages 1-14, November.
    3. William Metcalfe, 2020. "Ethereum, Smart Contracts, DApps," Economics, Law, and Institutions in Asia Pacific, in: Makoto Yano & Chris Dai & Kenichi Masuda & Yoshio Kishimoto (ed.), Blockchain and Crypto Currency, chapter 0, pages 77-93, Springer.
    4. Bianca Goia & Tudor Cioara & Ionut Anghel, 2022. "Virtual Power Plant Optimization in Smart Grids: A Narrative Review," Future Internet, MDPI, vol. 14(5), pages 1-22, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhammad Waseem & Muhammad Adnan Khan & Arman Goudarzi & Shah Fahad & Intisar Ali Sajjad & Pierluigi Siano, 2023. "Incorporation of Blockchain Technology for Different Smart Grid Applications: Architecture, Prospects, and Challenges," Energies, MDPI, vol. 16(2), pages 1-29, January.
    2. Maria Symeonidou & Agis M. Papadopoulos, 2022. "Selection and Dimensioning of Energy Storage Systems for Standalone Communities: A Review," Energies, MDPI, vol. 15(22), pages 1-28, November.
    3. Chai, Shanglei & Zhang, Xichun & Abedin, Mohammad Zoynul & Chen, Huizheng & Lucey, Brian & Hajek, Petr, 2023. "An optimized GRT model with blockchain digital smart contracts for power generation enterprises," Energy Economics, Elsevier, vol. 128(C).
    4. Yuly V. Garcia & Oscar Garzon & Carlos J. Delgado & Jan L. Diaz & Cesar A. Vega Penagos & Fabio Andrade & Adriana C. Luna & J. C. Hernandez, 2023. "Overview on Transactive Energy—Advantages and Challenges for Weak Power Grids," Energies, MDPI, vol. 16(12), pages 1-19, June.
    5. Roth, Tamara & Utz, Manuel & Baumgarte, Felix & Rieger, Alexander & Sedlmeir, Johannes & Strüker, Jens, 2022. "Electricity powered by blockchain: A review with a European perspective," Applied Energy, Elsevier, vol. 325(C).
    6. Torge Wolff & Astrid Nieße, 2023. "Dynamic Overlapping Coalition Formation in Electricity Markets: An Extended Formal Model," Energies, MDPI, vol. 16(17), pages 1-28, August.
    7. Bhargav Appasani & Sunil Kumar Mishra & Amitkumar V. Jha & Santosh Kumar Mishra & Florentina Magda Enescu & Ioan Sorin Sorlei & Fernando Georgel Bîrleanu & Noureddine Takorabet & Phatiphat Thounthong , 2022. "Blockchain-Enabled Smart Grid Applications: Architecture, Challenges, and Solutions," Sustainability, MDPI, vol. 14(14), pages 1-33, July.
    8. Hampton, Harrison & Foley, Aoife M. & Del Rio, Dylan Furszyfer & Sovacool, Benjamin, 2022. "Developing future retail electricity markets with a customer-centric focus," Energy Policy, Elsevier, vol. 168(C).
    9. Francesco Gulotta & Edoardo Daccò & Alessandro Bosisio & Davide Falabretti, 2023. "Opening of Ancillary Service Markets to Distributed Energy Resources: A Review," Energies, MDPI, vol. 16(6), pages 1-25, March.
    10. Pandey, Anubhav Kumar & Jadoun, Vinay Kumar & Jayalakshmi, N.S. & Malik, Hasmat & García Márquez, Fausto Pedro, 2024. "Multi-objective price based flexible reserve scheduling of virtual power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    11. Zhang, Hongyan & Gao, Shuaizhi & Zhou, Peng, 2023. "Role of digitalization in energy storage technological innovation: Evidence from China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:20:p:13286-:d:943694. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.