IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i19p12362-d928309.html
   My bibliography  Save this article

Autonomous Home Composting Units for Urban Areas in Greece: The Case Study of the Municipality of Rhodes

Author

Listed:
  • Angeliki Maragkaki

    (Laboratory of Solid Waste & Wastewater Management, School of Agricultural Science, Hellenic Mediterranean University—Educational and Research Committee, 71401 Heraklion, Greece)

  • Christos Gamvroudis

    (Municipality of Rhodes, 1 Platia Eleftherias, 85100 Rhodes, Greece)

  • Christina Lountou

    (Municipality of Rhodes, 1 Platia Eleftherias, 85100 Rhodes, Greece)

  • Pothitos Stamatiadis

    (Municipality of Rhodes, 1 Platia Eleftherias, 85100 Rhodes, Greece)

  • Ioannis Sampathianakis

    (Laboratory of Solid Waste & Wastewater Management, School of Agricultural Science, Hellenic Mediterranean University—Educational and Research Committee, 71401 Heraklion, Greece)

  • Akrivi Papadaki

    (Laboratory of Solid Waste & Wastewater Management, School of Agricultural Science, Hellenic Mediterranean University—Educational and Research Committee, 71401 Heraklion, Greece)

  • Thrassyvoulos Manios

    (Laboratory of Solid Waste & Wastewater Management, School of Agricultural Science, Hellenic Mediterranean University—Educational and Research Committee, 71401 Heraklion, Greece)

Abstract

A significant issue is reducing the amount of biological waste that is disposed of in landfills, particularly in high-density residential areas. The Wastes Framework Directive (98/2008), in particular, sets forward the legal requirements for source separation in the European Union’s (EU) environmental legislation. The directive sets a target for separate collection of 10% of the organic waste produced in each municipality by 2030, especially with regard to organic waste. The pilot experience of an integrated biowaste management system that supports source separation and urban composting in an Autonomous Composting Unit (ACU) was presented in this study. The Municipality of Rhodes installed five ACUs in various locations. Used food and green waste are the two types of waste that are deposited in the ACUs. The development of a system for the collection of produced biowaste and its treatment at the source, without producing a nuisance, within an urban area, is the goal of this innovation. Since landfilling of mixed municipal solid waste has long been a common practice on the island of Rhodes, as well as in many other locations of insular and mainland Greece, this technique was introduced as a novel implementation and innovation for the region. The results showed that biowaste source separation was successfully carried out by citizens, resulting in high-purity feed. All ACUs produce compost that is of a standard quality. In accordance with the principles of the circular economy, this study showed that ACUs are a sustainable solution for taking a closed unit approach to the biowaste management problem in urban areas.

Suggested Citation

  • Angeliki Maragkaki & Christos Gamvroudis & Christina Lountou & Pothitos Stamatiadis & Ioannis Sampathianakis & Akrivi Papadaki & Thrassyvoulos Manios, 2022. "Autonomous Home Composting Units for Urban Areas in Greece: The Case Study of the Municipality of Rhodes," Sustainability, MDPI, vol. 14(19), pages 1-12, September.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:19:p:12362-:d:928309
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/19/12362/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/19/12362/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aisha Al-Rumaihi & Gordon McKay & Hamish R. Mackey & Tareq Al-Ansari, 2020. "Environmental Impact Assessment of Food Waste Management Using Two Composting Techniques," Sustainability, MDPI, vol. 12(4), pages 1-23, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giovanni Biancini & Barbara Marchetti & Luca Cioccolanti & Matteo Moglie, 2022. "Comprehensive Life Cycle Assessment Analysis of an Italian Composting Facility concerning Environmental Footprint Minimization and Renewable Energy Integration," Sustainability, MDPI, vol. 14(22), pages 1-21, November.
    2. Sabah Mariyam & Logan Cochrane & Shifa Zuhara & Gordon McKay, 2022. "Waste Management in Qatar: A Systematic Literature Review and Recommendations for System Strengthening," Sustainability, MDPI, vol. 14(15), pages 1-23, July.
    3. Tian, Hailin & Wang, Xiaonan & Lim, Ee Yang & Lee, Jonathan T.E. & Ee, Alvin W.L. & Zhang, Jingxin & Tong, Yen Wah, 2021. "Life cycle assessment of food waste to energy and resources: Centralized and decentralized anaerobic digestion with different downstream biogas utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    4. Giuliana Vinci & Roberto Ruggieri & Andrea Billi & Carmine Pagnozzi & Maria Vittoria Di Loreto & Marco Ruggeri, 2021. "Sustainable Management of Organic Waste and Recycling for Bioplastics: A LCA Approach for the Italian Case Study," Sustainability, MDPI, vol. 13(11), pages 1-19, June.
    5. Piotr Sołowiej & Patrycja Pochwatka & Agnieszka Wawrzyniak & Krzysztof Łapiński & Andrzej Lewicki & Jacek Dach, 2021. "The Effect of Heat Removal during Thermophilic Phase on Energetic Aspects of Biowaste Composting Process," Energies, MDPI, vol. 14(4), pages 1-14, February.
    6. Ewa Neczaj & Anna Grosser & Anna Grobelak & Piotr Celary & Bal Ram Singh, 2021. "Conversion of Sewage Sludge and Other Biodegradable Waste into High-Value Soil Amendment within a Circular Bioeconomy Perspective," Energies, MDPI, vol. 14(21), pages 1-17, October.
    7. Laís Fabiana Serafini & Manuel Feliciano & Manuel Angelo Rodrigues & Artur Gonçalves, 2023. "Systematic Review and Meta-Analysis on the Use of LCA to Assess the Environmental Impacts of the Composting Process," Sustainability, MDPI, vol. 15(2), pages 1-33, January.
    8. Adamu, Haruna & Bello, Usman & Yuguda, Abubakar Umar & Tafida, Usman Ibrahim & Jalam, Abdullahi Mohammad & Sabo, Ahmed & Qamar, Mohammad, 2023. "Production processes, techno-economic and policy challenges of bioenergy production from fruit and vegetable wastes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 186(C).
    9. Gulnar Sugurbekova & Elvira Nagyzbekkyzy & Ainur Sarsenova & Gaziza Danlybayeva & Sandugash Anuarbekova & Rabiga Kudaibergenova & Céline Frochot & Samir Acherar & Yerlan Zhatkanbayev & Nazira Moldagul, 2023. "Sewage Sludge Management and Application in the Form of Sustainable Fertilizer," Sustainability, MDPI, vol. 15(7), pages 1-15, April.
    10. Hai Wang, 2023. "Comparative Study of a Fixed-Focus Fresnel Lens Solar Concentrator/Conical Cavity Receiver System with and without Glass Cover Installed in a Solar Cooker," Sustainability, MDPI, vol. 15(12), pages 1-19, June.
    11. Hamid Rastegari Kopaei & Mehdi Nooripoor & Ayatollah Karami & Ruxandra Malina Petrescu-Mag & Dacinia Crina Petrescu, 2021. "Drivers of Residents’ Home Composting Intention: Integrating the Theory of Planned Behavior, the Norm Activation Model, and the Moderating Role of Composting Knowledge," Sustainability, MDPI, vol. 13(12), pages 1-21, June.
    12. Cecilia Bruni & Çağrı Akyol & Giulia Cipolletta & Anna Laura Eusebi & Donatella Caniani & Salvatore Masi & Joan Colón & Francesco Fatone, 2020. "Decentralized Community Composting: Past, Present and Future Aspects of Italy," Sustainability, MDPI, vol. 12(8), pages 1-20, April.
    13. Kulyash Meiramkulova & Davud Devrishov & Anuarbek Kakabayev & Nurbiy Marzanov & Aigul Kurmanbayeva & Gulmira Adilbektegi & Saida Marzanova & Assel Kydyrbekova & Timoth Mkilima, 2022. "Investigating the Influence of Fly Attractant on Food Waste Recovery through Fly Larvae Production," Sustainability, MDPI, vol. 14(17), pages 1-15, August.
    14. Prakash Kumar Sarangi & Rajesh Kumar Srivastava & Akhilesh Kumar Singh & Uttam Kumar Sahoo & Piotr Prus & Roman Sass, 2023. "Municipal-Based Biowaste Conversion for Developing and Promoting Renewable Energy in Smart Cities," Sustainability, MDPI, vol. 15(17), pages 1-28, August.
    15. Samar Elkhalifa & Hamish R. Mackey & Tareq Al-Ansari & Gordon McKay, 2022. "Pyrolysis of Biosolids to Produce Biochars: A Review," Sustainability, MDPI, vol. 14(15), pages 1-19, August.
    16. Piotr Sulewski & Karolina Kais & Marlena Gołaś & Grzegorz Rawa & Klaudia Urbańska & Adam Wąs, 2021. "Home Bio-Waste Composting for the Circular Economy," Energies, MDPI, vol. 14(19), pages 1-25, September.
    17. Prasesh Pote Shrestha & Anish Ghimire & Mohan B. Dangi & Michael A. Urynowicz, 2023. "Development of a Municipal Solid Waste Management Life Cycle Assessment Tool for Banepa Municipality, Nepal," Sustainability, MDPI, vol. 15(13), pages 1-15, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:19:p:12362-:d:928309. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.