IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i19p12361-d928225.html
   My bibliography  Save this article

An Innovative Model of Smart Product Service Ecosystem (SPSE) on Sustainability: Survival System Model, Value Emerges, and a Case Study

Author

Listed:
  • Qingfei Tong

    (Institute of Industrial Engineering and Management, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China)

  • Xinguo Ming

    (Institute of Industrial Engineering and Management, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China)

  • Maokuan Zheng

    (Institute of Industrial Engineering and Management, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China)

  • Xianyu Zhang

    (Institute of Industrial Engineering and Management, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China)

  • Zexiao Wang

    (Institute of Industrial Engineering and Management, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China)

Abstract

Smart product service ecosystem (SPSE) has multi-level complexity. It is necessary to find a method to describe the hierarchical nested relationship and topological relationship of the structure of SPSE, so as to provide a systematic reference for the construction of industrial SPSE such as smart home and smart Internet-connected vehicle. Moreover, the explanatory ability of ecological service organization is insufficient, and there is a lack of accurate quantitative analysis and modeling tools. Therefore, this paper studies a survival system model and structural modeling for SPSE on sustainability using EVSM (eco-viable system model). In terms of case analysis, this paper applies the proposed methods and technologies to the structural modeling of smart home service ecosystem. The results show that EVSM model can intuitively analyze the nested hierarchical relationship of smart home service ecosystem through graphical method. This set of systematic methods has important application value for guiding the construction of system structure model of similar smart product service ecosystem and analyzing key growth and stability indicators.

Suggested Citation

  • Qingfei Tong & Xinguo Ming & Maokuan Zheng & Xianyu Zhang & Zexiao Wang, 2022. "An Innovative Model of Smart Product Service Ecosystem (SPSE) on Sustainability: Survival System Model, Value Emerges, and a Case Study," Sustainability, MDPI, vol. 14(19), pages 1-21, September.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:19:p:12361-:d:928225
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/19/12361/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/19/12361/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ahmed M. Al-Mahbashi & Muawia Dafalla & Abdullah Shaker & Mosleh A. Al-Shamrani, 2021. "Sustainable and Stable Clay Sand Liners over Time," Sustainability, MDPI, vol. 13(14), pages 1-11, July.
    2. Ramesh Subramoniam & Erik Sundin & Suresh Subramoniam & Donald Huisingh, 2021. "Riding the Digital Product Life Cycle Waves towards a Circular Economy," Sustainability, MDPI, vol. 13(16), pages 1-23, August.
    3. Lichun Mo & Jiancheng Chen & Yi Xie, 2021. "Ecological Approach for the Evaluation of Structure and Sustainability in the Tourism Industry," Sustainability, MDPI, vol. 13(23), pages 1-13, December.
    4. Sophie I. Hallstedt & Ola Isaksson & Anna Öhrwall Rönnbäck, 2020. "The Need for New Product Development Capabilities from Digitalization, Sustainability, and Servitization Trends," Sustainability, MDPI, vol. 12(23), pages 1-26, December.
    5. Antonio Minguzzi & Michele Modina & Carmen Gallucci, 2019. "Foundations of Banking Origin and Social Rating Philosophy—A New Proposal for an Evaluation System," Sustainability, MDPI, vol. 11(13), pages 1-16, June.
    6. Athena Roumboutsos & Ioanna Pagoni & Athena Tsirimpa & Amalia Polydoropoulou, 2021. "An Ecosystem Innovation Framework: Assessing Mobility as a Service in Budapest," Sustainability, MDPI, vol. 13(7), pages 1-19, March.
    7. Fu, Xueqian & Sun, Hongbin & Guo, Qinglai & Pan, Zhaoguang & Xiong, Wen & Wang, Li, 2017. "Uncertainty analysis of an integrated energy system based on information theory," Energy, Elsevier, vol. 122(C), pages 649-662.
    8. Liang, Weijuan & Ma, Shuangge & Lin, Cunjie, 2021. "Marginal false discovery rate for a penalized transformation survival model," Computational Statistics & Data Analysis, Elsevier, vol. 160(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sasha Shahbazi & Kerstin Johansen & Erik Sundin, 2021. "Product Design for Automated Remanufacturing—A Case Study of Electric and Electronic Equipment in Sweden," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
    2. Chi, Lixun & Su, Huai & Zio, Enrico & Zhang, Jinjun & Li, Xueyi & Zhang, Li & Fan, Lin & Zhou, Jing & Bai, Hua, 2020. "Integrated Deterministic and Probabilistic Safety Analysis of Integrated Energy Systems with bi-directional conversion," Energy, Elsevier, vol. 212(C).
    3. Fu, Xueqian & Guo, Qinglai & Sun, Hongbin & Pan, Zhaoguang & Xiong, Wen & Wang, Li, 2017. "Typical scenario set generation algorithm for an integrated energy system based on the Wasserstein distance metric," Energy, Elsevier, vol. 135(C), pages 153-170.
    4. Jingsi Zhang & Liangqun Qi, 2021. "Crisis Preparedness of Healthcare Manufacturing Firms during the COVID-19 Outbreak: Digitalization and Servitization," IJERPH, MDPI, vol. 18(10), pages 1-23, May.
    5. Zhang Zhen & Zahid Yousaf & Magdalena Radulescu & Muhammad Yasir, 2021. "Nexus of Digital Organizational Culture, Capabilities, Organizational Readiness, and Innovation: Investigation of SMEs Operating in the Digital Economy," Sustainability, MDPI, vol. 13(2), pages 1-15, January.
    6. Alberto de la Calle & Inmaculada Freije & Aitor Oyarbide, 2021. "Digital Product–Service Innovation and Sustainability: A Multiple-Case Study in the Capital Goods Industry," Sustainability, MDPI, vol. 13(11), pages 1-29, June.
    7. Chun Yang & Shijun You & Yingzhu Han & Xuan Wang & Ji Li & Lu Wang, 2023. "Research on Optimization Method of Integrated Energy System Network Planning," Sustainability, MDPI, vol. 15(11), pages 1-15, May.
    8. Ziyu Jia & Yan Jiao & Wei Zhang & Zheng Chen, 2022. "Rural Tourism Competitiveness and Development Mode, a Case Study from Chinese Township Scale Using Integrated Multi-Source Data," Sustainability, MDPI, vol. 14(7), pages 1-17, March.
    9. Victor De Araujo & Jozef Švajlenka & Juliano Vasconcelos & Herisson Santos & Sheyla Serra & Fernando Almeida Filho & José Paliari & Francisco Rocco Lahr & André Christoforo, 2022. "Is the Timber Construction Sector Prepared for E-Commerce via Instagram ® ? A Perspective from Brazil," Sustainability, MDPI, vol. 14(14), pages 1-15, July.
    10. Qinglan Liu & Adriana Hofmann Trevisan & Miying Yang & Janaina Mascarenhas, 2022. "A framework of digital technologies for the circular economy: Digital functions and mechanisms," Business Strategy and the Environment, Wiley Blackwell, vol. 31(5), pages 2171-2192, July.
    11. Anan Zhang & Hong Zhang & Meysam Qadrdan & Wei Yang & Xiaolong Jin & Jianzhong Wu, 2019. "Optimal Planning of Integrated Energy Systems for Offshore Oil Extraction and Processing Platforms," Energies, MDPI, vol. 12(4), pages 1-28, February.
    12. Annebeth Roor & Karen Maas, 2024. "Do impact investors live up to their promise? A systematic literature review on (im)proving investments' impacts," Business Strategy and the Environment, Wiley Blackwell, vol. 33(4), pages 3707-3732, May.
    13. Fu, Xueqian & Guo, Qinglai & Sun, Hongbin & Zhang, Xiurong & Wang, Li, 2017. "Estimation of the failure probability of an integrated energy system based on the first order reliability method," Energy, Elsevier, vol. 134(C), pages 1068-1078.
    14. Anna Preut & Jan-Philip Kopka & Uwe Clausen, 2021. "Digital Twins for the Circular Economy," Sustainability, MDPI, vol. 13(18), pages 1-15, September.
    15. Wang, L.X. & Zheng, J.H. & Li, M.S. & Lin, X. & Jing, Z.X. & Wu, P.Z. & Wu, Q.H. & Zhou, X.X., 2019. "Multi-time scale dynamic analysis of integrated energy systems: An individual-based model," Applied Energy, Elsevier, vol. 237(C), pages 848-861.
    16. Dwivedi Rajeev & Karim Fatma Jaffar & Starešinić Berislava, 2021. "Critical Success Factors of New Product Development: Evidence from Select Cases," Business Systems Research, Sciendo, vol. 12(1), pages 34-44, May.
    17. Lopion, Peter & Markewitz, Peter & Robinius, Martin & Stolten, Detlef, 2018. "A review of current challenges and trends in energy systems modeling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 156-166.
    18. Zain Anwar Ali & Mahreen Zain & M. Salman Pathan & Peter Mooney, 2024. "Contributions of artificial intelligence for circular economy transition leading toward sustainability: an explorative study in agriculture and food industries of Pakistan," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(8), pages 19131-19175, August.
    19. Saumyaranjan Sahoo & Suresh Kumar Jakhar, 2024. "Industry 4.0 deployment for circular economy performance—Understanding the role of green procurement and remanufacturing activities," Business Strategy and the Environment, Wiley Blackwell, vol. 33(2), pages 1144-1160, February.
    20. Alessandra Neri & Marta Negri & Enrico Cagno & Vikas Kumar & Jose Arturo Garza‐Reyes, 2023. "What digital‐enabled dynamic capabilities support the circular economy? A multiple case study approach," Business Strategy and the Environment, Wiley Blackwell, vol. 32(7), pages 5083-5101, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:19:p:12361-:d:928225. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.