IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i19p12272-d926790.html
   My bibliography  Save this article

Settlement Characteristic of Warm Permafrost Embankment with Two-Phase Closed Thermosyphons in Daxing’anling Mountains Region

Author

Listed:
  • Guanfu Wang

    (CCCC First Highway Consultants Co., Ltd., Xi’an 710075, China
    School of Transportation Science and Engineering, Harbin Institute of Technology, Harbin 150090, China)

  • Jiajun Bi

    (School of Transportation Science and Engineering, Harbin Institute of Technology, Harbin 150090, China)

  • Youkai Fan

    (School of Transportation Science and Engineering, Harbin Institute of Technology, Harbin 150090, China)

  • Long Zhu

    (Guizhou Police College, Guiyang 550005, China)

  • Feng Zhang

    (CCCC First Highway Consultants Co., Ltd., Xi’an 710075, China
    School of Transportation Science and Engineering, Harbin Institute of Technology, Harbin 150090, China)

  • Decheng Feng

    (School of Transportation Science and Engineering, Harbin Institute of Technology, Harbin 150090, China)

Abstract

The Xing’anling Mountains are the second largest permafrost region in China. One of the important issues for highways in these regions is how to control the settlement during the operation period to meet the demand of road stability. This paper selects a typical permafrost embankment in the Daxing’anling Mountains permafrost region, presents the finite element models of the embankment, and verifies it using field monitoring data to study the thermal and deformation characteristics within 50 years after construction. Calculation results illustrate that the permafrost under the embankment has degraded significantly during the operation period of the highway and led to serious settlement. To prevent the degradation of permafrost, a series of models with two-phase closed thermosyphons (TPCTs) were established to analyze the cooling effect. The contribution of different factors, including install locations, depth, and shapes of the TPCTs, were assessed on their effects on cooling the permafrost and reducing the embankment settlement. Results show that the TPCTs have an excellent cooling effect on the permafrost embankment. However, as the TPCTs change the temperature distribution of the embankment, they will inevitably cause differential settlement. In order to ensure the cooling effect and reduce the differential settlement of the embankment, it is suggested that L-shaped TPCTs should be adopted in the remedial engineering.

Suggested Citation

  • Guanfu Wang & Jiajun Bi & Youkai Fan & Long Zhu & Feng Zhang & Decheng Feng, 2022. "Settlement Characteristic of Warm Permafrost Embankment with Two-Phase Closed Thermosyphons in Daxing’anling Mountains Region," Sustainability, MDPI, vol. 14(19), pages 1-20, September.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:19:p:12272-:d:926790
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/19/12272/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/19/12272/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pei, Wansheng & Zhang, Mingyi & Lai, Yuanming & Yan, Zhongrui & Li, Shuangyang, 2019. "Evaluation of the ground heat control capacity of a novel air-L-shaped TPCT-ground (ALTG) cooling system in cold regions," Energy, Elsevier, vol. 179(C), pages 655-668.
    2. Shuangjie Wang & Fujun Niu & Jianbing Chen & Yuanhong Dong, 2020. "Permafrost research in China related to express highway construction," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 31(3), pages 406-416, July.
    3. Quirin Schiermeier, 2003. "Alpine thaw breaks ice over permafrost's role," Nature, Nature, vol. 424(6950), pages 712-712, August.
    4. Jiankun Liu & Bowen Tai & Jianhong Fang, 2019. "Ground temperature and deformation analysis for an expressway embankment in warm permafrost regions of the Tibet plateau," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 30(3), pages 208-221, July.
    5. Boris K. Biskaborn & Sharon L. Smith & Jeannette Noetzli & Heidrun Matthes & Gonçalo Vieira & Dmitry A. Streletskiy & Philippe Schoeneich & Vladimir E. Romanovsky & Antoni G. Lewkowicz & Andrey Abramo, 2019. "Permafrost is warming at a global scale," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Lin & Yu, Wenbing & Zhang, Tianqi & Yi, Xin, 2023. "Asymmetric talik formation beneath the embankment of Qinghai-Tibet Highway triggered by the sunny-shady effect," Energy, Elsevier, vol. 266(C).
    2. Chen, Lin & Lai, Yuanming & Fortier, Daniel & Harris, Stuart A., 2022. "Impacts of snow cover on the pattern and velocity of air flow in air convection embankments of sub-Arctic regions," Renewable Energy, Elsevier, vol. 199(C), pages 1033-1046.
    3. Zhou, Yanqiao & Zhang, Mingyi & Pei, Wansheng & Jin, Long & Wang, Chong & Li, Guanji, 2023. "Thermal-deformation behavior of a crushed-rock embankment along a high-grade highway in permafrost regions," Energy, Elsevier, vol. 283(C).
    4. Juan Pedro Rodríguez-López & Chihua Wu & Tatiana A. Vishnivetskaya & Julian B. Murton & Wenqiang Tang & Chao Ma, 2022. "Permafrost in the Cretaceous supergreenhouse," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    5. Cao, Yapeng & Li, Guoyu & Ma, Wei & Chen, Dun & Shang, Yunhu & Wu, Gang & Gao, Kai & Ying, Sai, 2023. "Permafrost degradation induced by warm-oil pipelines and analytical results of thermosyphon-based thawing mitigation," Energy, Elsevier, vol. 269(C).
    6. Stepan Prokopievich Varlamov & Yuri Borisovich Skachkov & Pavel Nikolaevich Skryabin, 2021. "Long-Term Variability in Ground Thermal State in Central Yakutia’s Tuymaada Valley," Land, MDPI, vol. 10(11), pages 1-22, November.
    7. Jannik Martens & Birgit Wild & Igor Semiletov & Oleg V. Dudarev & Örjan Gustafsson, 2022. "Circum-Arctic release of terrestrial carbon varies between regions and sources," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. Georgii A. Alexandrov & Veronika A. Ginzburg & Gregory E. Insarov & Anna A. Romanovskaya, 2021. "CMIP6 model projections leave no room for permafrost to persist in Western Siberia under the SSP5-8.5 scenario," Climatic Change, Springer, vol. 169(3), pages 1-11, December.
    9. Libo Wu & Fujun Niu & Zhanju Lin & Yunhu Shang & Sanjay Nimbalkar & Daichao Sheng, 2023. "Experimental and Numerical Analyses on the Frost Heave Deformation of Reclaimed Gravel from a Tunnel Excavation as a Structural Fill in Cold Mountainous Regions," Sustainability, MDPI, vol. 15(18), pages 1-20, September.
    10. Andreas Kääb & Julie Røste, 2024. "Rock glaciers across the United States predominantly accelerate coincident with rise in air temperatures," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    11. Daniel J. Vecellio & Oliver W. Frauenfeld, 2022. "Surface and sub-surface drivers of autumn temperature increase over Eurasian permafrost," Climatic Change, Springer, vol. 172(1), pages 1-18, May.
    12. Feng Cheng & Carmala Garzione & Xiangzhong Li & Ulrich Salzmann & Florian Schwarz & Alan M. Haywood & Julia Tindall & Junsheng Nie & Lin Li & Lin Wang & Benjamin W. Abbott & Ben Elliott & Weiguo Liu &, 2022. "Alpine permafrost could account for a quarter of thawed carbon based on Plio-Pleistocene paleoclimate analogue," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    13. Vladimir P. Melnikov & Victor I. Osipov & Anatoly V. Brouchkov & Arina A. Falaleeva & Svetlana V. Badina & Mikhail N. Zheleznyak & Marat R. Sadurtdinov & Nikolay A. Ostrakov & Dmitry S. Drozdov & Alex, 2022. "Climate warming and permafrost thaw in the Russian Arctic: potential economic impacts on public infrastructure by 2050," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(1), pages 231-251, May.
    14. Shuangjie Wang & Fujun Niu & Jianbing Chen & Yuanhong Dong, 2020. "Permafrost research in China related to express highway construction," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 31(3), pages 406-416, July.
    15. Hao Wang & Lun Ji & Hongju Zhang & Yuqi Lou & Linlin Xu & Yiqiu Tan, 2023. "Indicator Construction of Road Surface Deformation Activity in Cold Regions and Its Relationship with the Distribution and Development of Longitudinal Cracks," Sustainability, MDPI, vol. 15(21), pages 1-16, October.
    16. Shijin Wang, 2024. "Opportunities and threats of cryosphere change to the achievement of UN 2030 SDGs," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-13, December.
    17. M. E. Marushchak & J. Kerttula & K. Diáková & A. Faguet & J. Gil & G. Grosse & C. Knoblauch & N. Lashchinskiy & P. J. Martikainen & A. Morgenstern & M. Nykamb & J. G. Ronkainen & H. M. P. Siljanen & L, 2021. "Thawing Yedoma permafrost is a neglected nitrous oxide source," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    18. K. M. Walter Anthony & P. Anthony & N. Hasson & C. Edgar & O. Sivan & E. Eliani-Russak & O. Bergman & B. J. Minsley & S. R. James & N. J. Pastick & A. Kholodov & S. Zimov & E. Euskirchen & M. S. Bret-, 2024. "Upland Yedoma taliks are an unpredicted source of atmospheric methane," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    19. Li, Chenglin & Zhang, Guozhu & Xiao, Suguang & Shi, Yehui & Xu, Chenghua & Sun, Yinjuan, 2023. "Numerical investigation on thermal performance enhancement mechanism of tunnel lining GHEs using two-phase closed thermosyphons for building cooling," Renewable Energy, Elsevier, vol. 212(C), pages 875-886.
    20. Rúna Í. Magnússon & Alexandra Hamm & Sergey V. Karsanaev & Juul Limpens & David Kleijn & Andrew Frampton & Trofim C. Maximov & Monique M. P. D. Heijmans, 2022. "Extremely wet summer events enhance permafrost thaw for multiple years in Siberian tundra," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:19:p:12272-:d:926790. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.