IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i18p11276-d910127.html
   My bibliography  Save this article

Land Suitability Investigation for Solar Power Plant Using GIS, AHP and Multi-Criteria Decision Approach: A Case of Megacity Kolkata, West Bengal, India

Author

Listed:
  • Bijay Halder

    (Department of Remote Sensing and GIS, Vidyasagar University, Midnapore 721102, India)

  • Papiya Banik

    (Department of Geography, University of Calcutta, Kolkata 700019, India)

  • Hussein Almohamad

    (Department of Geography, College of Arabic Language and Social Studies, Qassim University, Buraydah 51452, Saudi Arabia)

  • Ahmed Abdullah Al Dughairi

    (Department of Geography, College of Arabic Language and Social Studies, Qassim University, Buraydah 51452, Saudi Arabia)

  • Motrih Al-Mutiry

    (Department of Geography, College of Arts, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia)

  • Haya Falah Al Shahrani

    (Department of Geography, College of Arabic Language and Social Studies, Qassim University, Buraydah 51452, Saudi Arabia)

  • Hazem Ghassan Abdo

    (Geography Department, Faculty of Arts and Humanities, University of Tartous, Tartous P.O. Box 2147, Syria
    Geography Department, Faculty of Arts and Humanities, Damascus University, Damascus P.O. Box 30621, Syria
    Geography Department, Arts and Humanities Faculty, Tishreen University, Lattakia P.O. Box 30621, Syria)

Abstract

Renewable energy sources are the most necessitated natural energy to reduce fossil fuels globally. Fossil fuel is the most valuable and limited resource on the planet, but on the other hand, renewable energy creates less pollution. Solar energy is the most effective renewable resource for daily use. Solar power plants are necessary for domestic and daily use. Remote sensing and geographic information technology (GIS) were used for this study to delineate the possible site selection of solar power plants in Kolkata and the surrounding area in West Bengal, India. The analytical hierarchy process (AHP) and the multi-criteria decision-making process (MCDA) were used for each weight calculation and ArcGIS v10.8 was applied for weighted overlay analysis (WOA) for delineation of the result. The site suitability map was developed using a pairwise comparison matrix and the weights were calculated for each criterion. The suitability map was divided into five categories, from not suitable to very highly suitable. A total of 474.21 km 2 (10.69%) of the area was classified as very highly suitable whereas 249.54 km 2 (5.62%) area was classified as not suitable because of the water area and east Kolkata wetland. A total of 1438.15 km 2 (32.43%) of the area was classified as highly suitable for a solar power plant. The Kolkata megacity and water body locations were identified as moderate to not suitable sites. Very high and high-potential sites were identified 2 to 5 km from the central business district (CBD) location, which is Dharmotala. Renewable energy source is needed in the megacity of Kolkata. If solar power plants are contracted then the demand for fossil fuel will be reduced one day, and that will help the environment as well as the society in terms of sustainable development. This study result is helpful for administrators, urban planners, developers, and other stakeholders for the implementation and development of a new solar power plant in the study area.

Suggested Citation

  • Bijay Halder & Papiya Banik & Hussein Almohamad & Ahmed Abdullah Al Dughairi & Motrih Al-Mutiry & Haya Falah Al Shahrani & Hazem Ghassan Abdo, 2022. "Land Suitability Investigation for Solar Power Plant Using GIS, AHP and Multi-Criteria Decision Approach: A Case of Megacity Kolkata, West Bengal, India," Sustainability, MDPI, vol. 14(18), pages 1-21, September.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:18:p:11276-:d:910127
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/18/11276/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/18/11276/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Al Garni, Hassan Z. & Awasthi, Anjali, 2017. "Solar PV power plant site selection using a GIS-AHP based approach with application in Saudi Arabia," Applied Energy, Elsevier, vol. 206(C), pages 1225-1240.
    2. Anwarzai, Mohammad Abed & Nagasaka, Ken, 2017. "Utility-scale implementable potential of wind and solar energies for Afghanistan using GIS multi-criteria decision analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 150-160.
    3. Colak, H. Ebru & Memisoglu, Tugba & Gercek, Yasin, 2020. "Optimal site selection for solar photovoltaic (PV) power plants using GIS and AHP: A case study of Malatya Province, Turkey," Renewable Energy, Elsevier, vol. 149(C), pages 565-576.
    4. Doljak, Dejan & Stanojević, Gorica, 2017. "Evaluation of natural conditions for site selection of ground-mounted photovoltaic power plants in Serbia," Energy, Elsevier, vol. 127(C), pages 291-300.
    5. Manuel Sousa & Maria Fatima Almeida & Rodrigo Calili, 2021. "Multiple Criteria Decision Making for the Achievement of the UN Sustainable Development Goals: A Systematic Literature Review and a Research Agenda," Sustainability, MDPI, vol. 13(8), pages 1-37, April.
    6. Hazem Ghassan Abdo & Hussein Almohamad & Ahmed Abdullah Al Dughairi & Motirh Al-Mutiry, 2022. "GIS-Based Frequency Ratio and Analytic Hierarchy Process for Forest Fire Susceptibility Mapping in the Western Region of Syria," Sustainability, MDPI, vol. 14(8), pages 1-20, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jerome G. Gacu & Junrey D. Garcia & Eddie G. Fetalvero & Merian P. Catajay-Mani & Cris Edward F. Monjardin, 2023. "Suitability Analysis Using GIS-Based Analytic Hierarchy Process (AHP) for Solar Power Exploration," Energies, MDPI, vol. 16(18), pages 1-28, September.
    2. Li, Xiao-Ya & Dong, Xin-Yu & Chen, Sha & Ye, Yan-Mei, 2024. "The promising future of developing large-scale PV solar farms in China: A three-stage framework for site selection," Renewable Energy, Elsevier, vol. 220(C).
    3. Abdi, Ali & Astaraei, Fatemeh Razi & Rajabi, Nahid, 2024. "GIS-AHP-GAMS based analysis of wind and solar energy integration for addressing energy shortage in industries: A case study," Renewable Energy, Elsevier, vol. 225(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dimitra G. Vagiona, 2021. "Comparative Multicriteria Analysis Methods for Ranking Sites for Solar Farm Deployment: A Case Study in Greece," Energies, MDPI, vol. 14(24), pages 1-23, December.
    2. Finn, Thomas & McKenzie, Paul, 2020. "A high-resolution suitability index for solar farm location in complex landscapes," Renewable Energy, Elsevier, vol. 158(C), pages 520-533.
    3. Sward, Jeffrey A. & Nilson, Roberta S. & Katkar, Venktesh V. & Stedman, Richard C. & Kay, David L. & Ifft, Jennifer E. & Zhang, K. Max, 2021. "Integrating social considerations in multicriteria decision analysis for utility-scale solar photovoltaic siting," Applied Energy, Elsevier, vol. 288(C).
    4. Jalil Heidary Dahooie & Ali Husseinzadeh Kashan & Zahra Shoaei Naeini & Amir Salar Vanaki & Edmundas Kazimieras Zavadskas & Zenonas Turskis, 2022. "A Hybrid Multi-Criteria-Decision-Making Aggregation Method and Geographic Information System for Selecting Optimal Solar Power Plants in Iran," Energies, MDPI, vol. 15(8), pages 1-20, April.
    5. Morice R. O. Odhiambo & Adnan Abbas & Xiaochan Wang & Gladys Mutinda, 2020. "Solar Energy Potential in the Yangtze River Delta Region—A GIS-Based Assessment," Energies, MDPI, vol. 14(1), pages 1-22, December.
    6. Li, Xiao-Ya & Dong, Xin-Yu & Chen, Sha & Ye, Yan-Mei, 2024. "The promising future of developing large-scale PV solar farms in China: A three-stage framework for site selection," Renewable Energy, Elsevier, vol. 220(C).
    7. Rios, R. & Duarte, S., 2021. "Selection of ideal sites for the development of large-scale solar photovoltaic projects through Analytical Hierarchical Process – Geographic information systems (AHP-GIS) in Peru," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    8. Sultan Al-Shammari & Wonsuk Ko & Essam A. Al Ammar & Majed A. Alotaibi & Hyeong-Jin Choi, 2021. "Optimal Decision-Making in Photovoltaic System Selection in Saudi Arabia," Energies, MDPI, vol. 14(2), pages 1-18, January.
    9. Huaping Sun & Rehmat Ullah Awan & Muhammad Atif Nawaz & Muhammad Mohsin & Abdul Khaliq Rasheed & Nadeem Iqbal, 2021. "Assessing the socio-economic viability of solar commercialization and electrification in south Asian countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(7), pages 9875-9897, July.
    10. Raza, Muhammad Ali & Yousif, Muhammad & Hassan, Muhammad & Numan, Muhammad & Abbas Kazmi, Syed Ali, 2023. "Site suitability for solar and wind energy in developing countries using combination of GIS- AHP; a case study of Pakistan," Renewable Energy, Elsevier, vol. 206(C), pages 180-191.
    11. Sahoo, Somadutta & Zuidema, Christian & van Stralen, Joost N.P. & Sijm, Jos & Faaij, André, 2022. "Detailed spatial analysis of renewables’ potential and heat: A study of Groningen Province in the northern Netherlands," Applied Energy, Elsevier, vol. 318(C).
    12. Hou, Yali & Wang, Qunwei & Tan, Tao, 2023. "An ensemble learning framework for rooftop photovoltaic project site selection," Energy, Elsevier, vol. 285(C).
    13. Ali, Shahid & Taweekun, Juntakan & Techato, Kuaanan & Waewsak, Jompob & Gyawali, Saroj, 2019. "GIS based site suitability assessment for wind and solar farms in Songkhla, Thailand," Renewable Energy, Elsevier, vol. 132(C), pages 1360-1372.
    14. Besharati Fard, Moein & Moradian, Parisa & Emarati, Mohammadreza & Ebadi, Mehdi & Gholamzadeh Chofreh, Abdoulmohammad & Klemeŝ, Jiří Jaromír, 2022. "Ground-mounted photovoltaic power station site selection and economic analysis based on a hybrid fuzzy best-worst method and geographic information system: A case study Guilan province," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    15. Shorabeh, Saman Nadizadeh & Samany, Najmeh Neysani & Minaei, Foad & Firozjaei, Hamzeh Karimi & Homaee, Mehdi & Boloorani, Ali Darvishi, 2022. "A decision model based on decision tree and particle swarm optimization algorithms to identify optimal locations for solar power plants construction in Iran," Renewable Energy, Elsevier, vol. 187(C), pages 56-67.
    16. Yılmaz, Kutay & Dinçer, Ali Ersin & Ayhan, Elif N., 2023. "Exploring flood and erosion risk indices for optimal solar PV site selection and assessing the influence of topographic resolution," Renewable Energy, Elsevier, vol. 216(C).
    17. Noorollahi, Younes & Ghenaatpisheh Senani, Ali & Fadaei, Ahmad & Simaee, Mobina & Moltames, Rahim, 2022. "A framework for GIS-based site selection and technical potential evaluation of PV solar farm using Fuzzy-Boolean logic and AHP multi-criteria decision-making approach," Renewable Energy, Elsevier, vol. 186(C), pages 89-104.
    18. Jerome G. Gacu & Junrey D. Garcia & Eddie G. Fetalvero & Merian P. Catajay-Mani & Cris Edward F. Monjardin, 2023. "Suitability Analysis Using GIS-Based Analytic Hierarchy Process (AHP) for Solar Power Exploration," Energies, MDPI, vol. 16(18), pages 1-28, September.
    19. Singh Doorga, Jay Rovisham & Rughooputh, Soonil D.D.V. & Boojhawon, Ravindra, 2019. "High resolution spatio-temporal modelling of solar photovoltaic potential for tropical islands: Case of Mauritius," Energy, Elsevier, vol. 169(C), pages 972-987.
    20. Gao, Jing & Wang, Chao & Wang, Zhanwu & Lin, Jin & Zhang, Runkai & Wu, Xin & Xu, Guangyin & Wang, Zhenfeng, 2024. "Site selection decision for biomass cogeneration projects from a sustainable perspective: A case study of China," Energy, Elsevier, vol. 286(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:18:p:11276-:d:910127. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.