IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i18p11150-d908055.html
   My bibliography  Save this article

Smart Traffic Data for the Analysis of Sustainable Travel Modes

Author

Listed:
  • Zoi Christoforou

    (Department of Civil Engineering, University of Patras, Panepistimioupoli Patron, 265 04 Patras, Greece
    COSYS-GRETTIA, University Gustave Eiffel, IFSTTAR, F-77447 Marne-la-Vallée, France)

  • Christos Gioldasis

    (Department of Civil Engineering, University of Patras, Panepistimioupoli Patron, 265 04 Patras, Greece)

  • Yeltsin Valero

    (COSYS-GRETTIA, University Gustave Eiffel, IFSTTAR, F-77447 Marne-la-Vallée, France)

  • Grigoris Vasileiou-Voudouris

    (Department of Civil Engineering, University of Patras, Panepistimioupoli Patron, 265 04 Patras, Greece)

Abstract

We present and validate the image analysis algorithm μ-scope to capture personal mobility devices’ (PMDs) movement characteristics and extract their movement dynamics even when they interact with each other and with pedestrians. Experimental data were used for validation of the proposed algorithm. Data were collected through a large-scale, semicontrolled, real-track experiment at the University of Patras campus. Participants (N = 112) included pedestrians, cyclists, and e-scooter drivers. The experiment was video recorded, and μ-scope was used for trajectory extraction. Some of the participants had installed, beforehand, the Phyphox application in their smartphones. Phyphox accurately measures x-y-z acceleration rates and was used, in our case, as the baseline measurement (i.e., “ground truth”). Statistical comparison between Phyphox and camera-based measurements shows very low difference in most cases. High pedestrian densities were the only case where relatively high root mean square errors were registered. The proposed algorithm can be thus considered capable of producing reliable speed and acceleration estimates. Low-quality conventional smartphone cameras were used in this experiment. As a result, the proposed method can be easily applied to all urban contexts under normal traffic conditions, but eventually not in the case of special or emergency events generating very high pedestrian densities.

Suggested Citation

  • Zoi Christoforou & Christos Gioldasis & Yeltsin Valero & Grigoris Vasileiou-Voudouris, 2022. "Smart Traffic Data for the Analysis of Sustainable Travel Modes," Sustainability, MDPI, vol. 14(18), pages 1-21, September.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:18:p:11150-:d:908055
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/18/11150/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/18/11150/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Farzaneh Bahrami & Alexandre Rigal, 2022. "Planning for plurality of streets: a spheric approach to micromobilities," Mobilities, Taylor & Francis Journals, vol. 17(1), pages 1-18, January.
    2. Samira Dibaj & Aryan Hosseinzadeh & Miloš N. Mladenović & Robert Kluger, 2021. "Where Have Shared E-Scooters Taken Us So Far? A Review of Mobility Patterns, Usage Frequency, and Personas," Sustainability, MDPI, vol. 13(21), pages 1-27, October.
    3. Alberica Domitilla Bozzi & Anne Aguilera, 2021. "Shared E-Scooters: A Review of Uses, Health and Environmental Impacts, and Policy Implications of a New Micro-Mobility Service," Sustainability, MDPI, vol. 13(16), pages 1-17, August.
    4. Javier Peláez Barrajón & Alejandro F. San Juan, 2020. "Validity and Reliability of a Smartphone Accelerometer for Measuring Lift Velocity in Bench-Press Exercises," Sustainability, MDPI, vol. 12(6), pages 1-9, March.
    5. McKenzie, Grant, 2019. "Spatiotemporal comparative analysis of scooter-share and bike-share usage patterns in Washington, D.C," Journal of Transport Geography, Elsevier, vol. 78(C), pages 19-28.
    6. Younes, Hannah & Zou, Zhenpeng & Wu, Jiahui & Baiocchi, Giovanni, 2020. "Comparing the Temporal Determinants of Dockless Scooter-share and Station-based Bike-share in Washington, D.C," Transportation Research Part A: Policy and Practice, Elsevier, vol. 134(C), pages 308-320.
    7. Huo, Jinghai & Yang, Hongtai & Li, Chaojing & Zheng, Rong & Yang, Linchuan & Wen, Yi, 2021. "Influence of the built environment on E-scooter sharing ridership: A tale of five cities," Journal of Transport Geography, Elsevier, vol. 93(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mehzabin Tuli, Farzana & Mitra, Suman & Crews, Mariah B., 2021. "Factors influencing the usage of shared E-scooters in Chicago," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 164-185.
    2. Shah, Nitesh R. & Ziedan, Abubakr & Brakewood, Candace & Cherry, Christopher R., 2023. "Shared e-scooter service providers with large fleet size have a competitive advantage: Findings from e-scooter demand and supply analysis of Nashville, Tennessee," Transportation Research Part A: Policy and Practice, Elsevier, vol. 178(C).
    3. Krauss, Konstantin & Gnann, Till & Burgert, Tobias & Axhausen, Kay W., 2024. "Faster, greener, scooter? An assessment of shared e-scooter usage based on real-world driving data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 181(C).
    4. Foissaud, Nicolas & Gioldasis, Christos & Tamura, Shun & Christoforou, Zoi & Farhi, Nadir, 2022. "Free-floating e-scooter usage in urban areas: A spatiotemporal analysis," Journal of Transport Geography, Elsevier, vol. 100(C).
    5. Liu, Hung-Chi & Lin, Jen-Jia, 2022. "Associations of built environments with spatiotemporal patterns of shared scooter use: A comparison with shared bike use," Transport Policy, Elsevier, vol. 126(C), pages 107-119.
    6. Yang, Hongtai & Huo, Jinghai & Bao, Yongxing & Li, Xuan & Yang, Linchuan & Cherry, Christopher R., 2021. "Impact of e-scooter sharing on bike sharing in Chicago," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 23-36.
    7. Jin, Scarlett T. & Wang, Lei & Sui, Daniel, 2023. "How the built environment affects E-scooter sharing link flows: A machine learning approach," Journal of Transport Geography, Elsevier, vol. 112(C).
    8. Maximilian Heumann & Tobias Kraschewski & Tim Brauner & Lukas Tilch & Michael H. Breitner, 2021. "A Spatiotemporal Study and Location-Specific Trip Pattern Categorization of Shared E-Scooter Usage," Sustainability, MDPI, vol. 13(22), pages 1-24, November.
    9. Hosseinzadeh, Aryan & Algomaiah, Majeed & Kluger, Robert & Li, Zhixia, 2021. "Spatial analysis of shared e-scooter trips," Journal of Transport Geography, Elsevier, vol. 92(C).
    10. Monika Hamerska & Monika Ziółko & Patryk Stawiarski, 2022. "A Sustainable Transport System—The MMQUAL Model of Shared Micromobility Service Quality Assessment," Sustainability, MDPI, vol. 14(7), pages 1-18, March.
    11. Huo, Jinghai & Yang, Hongtai & Li, Chaojing & Zheng, Rong & Yang, Linchuan & Wen, Yi, 2021. "Influence of the built environment on E-scooter sharing ridership: A tale of five cities," Journal of Transport Geography, Elsevier, vol. 93(C).
    12. Abouelela, Mohamed & Durán-Rodas, David & Antoniou, Constantinos, 2024. "Do we all need shared E-scooters? An accessibility-centered spatial equity evaluation approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 181(C).
    13. Ma, Xinwei & Ji, Yanjie & Yuan, Yufei & Van Oort, Niels & Jin, Yuchuan & Hoogendoorn, Serge, 2020. "A comparison in travel patterns and determinants of user demand between docked and dockless bike-sharing systems using multi-sourced data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 139(C), pages 148-173.
    14. Kim, Minju & Puczkowskyj, Nicholas & MacArthur, John & Dill, Jennifer, 2023. "Perspectives on e-scooters use: A multi-year cross-sectional approach to understanding e-scooter travel behavior in Portland, Oregon," Transportation Research Part A: Policy and Practice, Elsevier, vol. 178(C).
    15. Cheng, Long & Huang, Jie & Jin, Tanhua & Chen, Wendong & Li, Aoyong & Witlox, Frank, 2023. "Comparison of station-based and free-floating bikeshare systems as feeder modes to the metro," Journal of Transport Geography, Elsevier, vol. 107(C).
    16. Samadzad, Mahdi & Nosratzadeh, Hossein & Karami, Hossein & Karami, Ali, 2023. "What are the factors affecting the adoption and use of electric scooter sharing systems from the end user's perspective?," Transport Policy, Elsevier, vol. 136(C), pages 70-82.
    17. Yang, Hongtai & Zheng, Rong & Li, Xuan & Huo, Jinghai & Yang, Linchuan & Zhu, Tong, 2022. "Nonlinear and threshold effects of the built environment on e-scooter sharing ridership," Journal of Transport Geography, Elsevier, vol. 104(C).
    18. Kimpton, Anthony & Loginova, Julia & Pojani, Dorina & Bean, Richard & Sigler, Thomas & Corcoran, Jonathan, 2022. "Weather to scoot? How weather shapes shared e-scooter ridership patterns," Journal of Transport Geography, Elsevier, vol. 104(C).
    19. Abouelela, Mohamed & Chaniotakis, Emmanouil & Antoniou, Constantinos, 2023. "Understanding the landscape of shared-e-scooters in North America; Spatiotemporal analysis and policy insights," Transportation Research Part A: Policy and Practice, Elsevier, vol. 169(C).
    20. Nigro, Marialisa & Castiglione, Marisdea & Maria Colasanti, Fabio & De Vincentis, Rosita & Valenti, Gaetano & Liberto, Carlo & Comi, Antonio, 2022. "Exploiting floating car data to derive the shifting potential to electric micromobility," Transportation Research Part A: Policy and Practice, Elsevier, vol. 157(C), pages 78-93.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:18:p:11150-:d:908055. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.