IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i15p9727-d882584.html
   My bibliography  Save this article

The Multi-Type Demands Oriented Framework for Flex-Route Transit Design

Author

Listed:
  • Jiayi Li

    (School of Intelligent Systems Engineering, Sun Yat-sen University, Shenzhen 518000, China)

  • Zhaocheng He

    (School of Intelligent Systems Engineering, Sun Yat-sen University, Shenzhen 518000, China
    Peng Cheng Laboratory, Shenzhen 518055, China)

  • Jiaming Zhong

    (School of Intelligent Systems Engineering, Sun Yat-sen University, Shenzhen 518000, China)

Abstract

Flex-route transit is regarded as the feasible solution to provide flexible service for various demands. To improve the service of flex-route transit, this paper proposes a design framework with the input of multi-type demands. Firstly, according to the multi-feature-based classification method, static stations and dynamic stations are divided by hierarchical clustering algorithm based on historical demands. Secondly, in the two-stage planning method, an offline plan is generated by multi-route design model and route-design-oriented genetic algorithm based on the classified stations and the flexible combination of reserved demands and regular travel patterns. Then, an online plan is adjusted by route modification model and greedy algorithm based on the offline plan and real-time demands. Numerical experiments demonstrate the applicability of flex-route transit in the realistic road network and show that flex-route transit can transport demands more effectively and save nearly 40% of cost compared with traditional transit.

Suggested Citation

  • Jiayi Li & Zhaocheng He & Jiaming Zhong, 2022. "The Multi-Type Demands Oriented Framework for Flex-Route Transit Design," Sustainability, MDPI, vol. 14(15), pages 1-23, August.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:15:p:9727-:d:882584
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/15/9727/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/15/9727/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Daganzo, Carlos F., 1984. "Checkpoint dial-a-ride systems," Transportation Research Part B: Methodological, Elsevier, vol. 18(4-5), pages 315-327.
    2. Liu, Xiaohan & Qu, Xiaobo & Ma, Xiaolei, 2021. "Improving flex-route transit services with modular autonomous vehicles," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    3. Mohammad Asghari & Seyed Mohammad Javad Mirzapour Al-E-Hashem & Yacine Rekik, 2022. "Environmental and social implications of incorporating carpooling service on a customized bus system," Post-Print hal-03598768, HAL.
    4. Gang Cheng & Shuzhi Zhao & Tao Zhang, 2019. "A Bi-Level Programming Model for Optimal Bus Stop Spacing of a Bus Rapid Transit System," Mathematics, MDPI, vol. 7(7), pages 1-14, July.
    5. Cordeau, Jean-François & Laporte, Gilbert, 2003. "A tabu search heuristic for the static multi-vehicle dial-a-ride problem," Transportation Research Part B: Methodological, Elsevier, vol. 37(6), pages 579-594, July.
    6. Erhardt, Gregory D. & Hoque, Jawad Mahmud & Goyal, Vedant & Berrebi, Simon & Brakewood, Candace & Watkins, Kari E., 2022. "Why has public transit ridership declined in the United States?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 161(C), pages 68-87.
    7. Diana, Marco & Dessouky, Maged M., 2004. "A new regret insertion heuristic for solving large-scale dial-a-ride problems with time windows," Transportation Research Part B: Methodological, Elsevier, vol. 38(6), pages 539-557, July.
    8. Jaw, Jang-Jei & Odoni, Amedeo R. & Psaraftis, Harilaos N. & Wilson, Nigel H. M., 1986. "A heuristic algorithm for the multi-vehicle advance request dial-a-ride problem with time windows," Transportation Research Part B: Methodological, Elsevier, vol. 20(3), pages 243-257, June.
    9. Yue Zheng & Liangpeng Gao & Wenquan Li & Tingsong Wang, 2021. "Vehicle Routing and Scheduling of Flex-Route Transit under a Dynamic Operating Environment," Discrete Dynamics in Nature and Society, Hindawi, vol. 2021, pages 1-10, January.
    10. Ceder, Avishai (Avi) & Butcher, Matthew & Wang, Lingli, 2015. "Optimization of bus stop placement for routes on uneven topography," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 40-61.
    11. Militão, Aitan M. & Tirachini, Alejandro, 2021. "Optimal fleet size for a shared demand-responsive transport system with human-driven vs automated vehicles: A total cost minimization approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 151(C), pages 52-80.
    12. Kirchhoff, Peter, 1995. "Public transit research and development in Germany," Transportation Research Part A: Policy and Practice, Elsevier, vol. 29(1), pages 1-7, January.
    13. Jin Zhang & Wenquan Li & Guoqing Wang & Jingcai Yu, 2021. "Feasibility Study of Transferring Shared Bicycle Users with Commuting Demand to Flex-Route Transit—A Case Study of Nanjing City, China," Sustainability, MDPI, vol. 13(11), pages 1-21, May.
    14. Yi Cao & Dandan Jiang & Shan Wang, 2022. "Optimization for Feeder Bus Route Model Design with Station Transfer," Sustainability, MDPI, vol. 14(5), pages 1-15, February.
    15. Akbar Ali & Nasir Ayub & Muhammad Shiraz & Niamat Ullah & Abdullah Gani & Muhammad Ahsan Qureshi, 2021. "Traffic Efficiency Models for Urban Traffic Management Using Mobile Crowd Sensing: A Survey," Sustainability, MDPI, vol. 13(23), pages 1-18, November.
    16. Knierim, Lukas & Schlüter, Jan Christian, 2021. "The attitude of potentially less mobile people towards demand responsive transport in a rural area in central Germany," Journal of Transport Geography, Elsevier, vol. 96(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Wei & Liu, Jiahui & Wang, Kai & Wang, Liang, 2024. "Routing and charging optimization for electric bus operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 181(C).
    2. Li, Mingyang & Tang, Jinjun, 2023. "Simulation-based optimization considering energy consumption for assisted station locations to enhance flex-route transit," Energy, Elsevier, vol. 277(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, Quan & Dessouky, Maged M., 2006. "A new insertion-based construction heuristic for solving the pickup and delivery problem with time windows," European Journal of Operational Research, Elsevier, vol. 175(2), pages 672-687, December.
    2. Jean-François Cordeau & Gilbert Laporte, 2007. "The dial-a-ride problem: models and algorithms," Annals of Operations Research, Springer, vol. 153(1), pages 29-46, September.
    3. Liu, Mengyang & Luo, Zhixing & Lim, Andrew, 2015. "A branch-and-cut algorithm for a realistic dial-a-ride problem," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 267-288.
    4. Paquette, Julie & Cordeau, Jean-François & Laporte, Gilbert & Pascoal, Marta M.B., 2013. "Combining multicriteria analysis and tabu search for dial-a-ride problems," Transportation Research Part B: Methodological, Elsevier, vol. 52(C), pages 1-16.
    5. Li, Mingyang & Tang, Jinjun, 2023. "Simulation-based optimization considering energy consumption for assisted station locations to enhance flex-route transit," Energy, Elsevier, vol. 277(C).
    6. Sayarshad, Hamid R. & Chow, Joseph Y.J., 2015. "A scalable non-myopic dynamic dial-a-ride and pricing problem," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 539-554.
    7. Liu, Ran & Xie, Xiaolan & Augusto, Vincent & Rodriguez, Carlos, 2013. "Heuristic algorithms for a vehicle routing problem with simultaneous delivery and pickup and time windows in home health care," European Journal of Operational Research, Elsevier, vol. 230(3), pages 475-486.
    8. Hou, Liwen & Li, Dong & Zhang, Dali, 2018. "Ride-matching and routing optimisation: Models and a large neighbourhood search heuristic," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 143-162.
    9. Luo, Ying & Schonfeld, Paul, 2007. "A rejected-reinsertion heuristic for the static Dial-A-Ride Problem," Transportation Research Part B: Methodological, Elsevier, vol. 41(7), pages 736-755, August.
    10. Zhao, Jiamin & Dessouky, Maged, 2008. "Service capacity design problems for mobility allowance shuttle transit systems," Transportation Research Part B: Methodological, Elsevier, vol. 42(2), pages 135-146, February.
    11. Dong, Xiaotong & Chow, Joseph Y.J. & Waller, S. Travis & Rey, David, 2022. "A chance-constrained dial-a-ride problem with utility-maximising demand and multiple pricing structures," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    12. Häme, Lauri, 2011. "An adaptive insertion algorithm for the single-vehicle dial-a-ride problem with narrow time windows," European Journal of Operational Research, Elsevier, vol. 209(1), pages 11-22, February.
    13. Kirchler, Dominik & Wolfler Calvo, Roberto, 2013. "A Granular Tabu Search algorithm for the Dial-a-Ride Problem," Transportation Research Part B: Methodological, Elsevier, vol. 56(C), pages 120-135.
    14. Yves Molenbruch & Kris Braekers & An Caris, 2017. "Typology and literature review for dial-a-ride problems," Annals of Operations Research, Springer, vol. 259(1), pages 295-325, December.
    15. Christian Pfeiffer & Arne Schulz, 2022. "An ALNS algorithm for the static dial-a-ride problem with ride and waiting time minimization," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(1), pages 87-119, March.
    16. Bongiovanni, Claudia & Kaspi, Mor & Cordeau, Jean-François & Geroliminis, Nikolas, 2022. "A machine learning-driven two-phase metaheuristic for autonomous ridesharing operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 165(C).
    17. Shangyao Yan & Chun-Ying Chen & Chuan-Che Wu, 2012. "Solution methods for the taxi pooling problem," Transportation, Springer, vol. 39(3), pages 723-748, May.
    18. Xiang, Zhihai & Chu, Chengbin & Chen, Haoxun, 2006. "A fast heuristic for solving a large-scale static dial-a-ride problem under complex constraints," European Journal of Operational Research, Elsevier, vol. 174(2), pages 1117-1139, October.
    19. Hatzenbühler, Jonas & Jenelius, Erik & Gidófalvi, Gyözö & Cats, Oded, 2023. "Modular vehicle routing for combined passenger and freight transport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
    20. Reinhardt, Line Blander & Clausen, Tommy & Pisinger, David, 2013. "Synchronized dial-a-ride transportation of disabled passengers at airports," European Journal of Operational Research, Elsevier, vol. 225(1), pages 106-117.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:15:p:9727-:d:882584. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.