IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i15p9685-d881801.html
   My bibliography  Save this article

Reuse of Powders and Recycled Aggregates from Mixed Construction and Demolition Waste in Alkali-Activated Materials and Precast Concrete Units

Author

Listed:
  • Rafael Robayo-Salazar

    (Composite Materials Group (GMC-CENM), Universidad del Valle, Cali 76001, Colombia)

  • William Valencia-Saavedra

    (Composite Materials Group (GMC-CENM), Universidad del Valle, Cali 76001, Colombia)

  • Ruby Mejía de Gutiérrez

    (Composite Materials Group (GMC-CENM), Universidad del Valle, Cali 76001, Colombia)

Abstract

This article describes the recycling of coarse and fine fractions and powder from construction and demolition waste (CDW) using alkaline activation technology (geopolymerization). The CDW sample used corresponds to a mixture (mixed waste) of concrete (Co), ceramics (Ce) and masonry (M). Co, Ce and M (CDW-Mixed) powders were used as geopolymer precursors. As an alkaline activator, a mixture of sodium hydroxide (NaOH) and sodium silicate (Na 2 SiO 3 ) was used. From CDW-Mixed, a hybrid cement added with 10% ordinary Portland cement (OPC) was synthesized to promote curing at room temperature (25 °C). From the alkali-activated hybrid cement and the incorporation of mixed recycled aggregates (gravel and sand), applications of mortars, concretes, fiber-reinforced materials and prefabricated units, such as solid blocks, perforated (hollow) blocks and pavers, were produced. The results of the physical–mechanical characterization validate the application potential of these CDW-based materials in the construction sector. Compressive strengths of up to 40.5 MPa for mortar and 36.9 MPa for concrete were obtained after 90 days of curing at room temperature ≈ 25 °C. Similarly, a life cycle analysis (LCA) associated with raw materials demonstrated the environmental sustainability (44% lower carbon footprint) of mixed alkali-activated CDWs compared to conventional materials based on OPC.

Suggested Citation

  • Rafael Robayo-Salazar & William Valencia-Saavedra & Ruby Mejía de Gutiérrez, 2022. "Reuse of Powders and Recycled Aggregates from Mixed Construction and Demolition Waste in Alkali-Activated Materials and Precast Concrete Units," Sustainability, MDPI, vol. 14(15), pages 1-24, August.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:15:p:9685-:d:881801
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/15/9685/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/15/9685/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vieira, Castorina Silva & Pereira, Paulo M., 2015. "Use of recycled construction and demolition materials in geotechnical applications: A review," Resources, Conservation & Recycling, Elsevier, vol. 103(C), pages 192-204.
    2. Rafael A. Robayo-Salazar & William Valencia-Saavedra & Ruby Mejía de Gutiérrez, 2020. "Construction and Demolition Waste (CDW) Recycling—As Both Binder and Aggregates—In Alkali-Activated Materials: A Novel Re-Use Concept," Sustainability, MDPI, vol. 12(14), pages 1-18, July.
    3. Sajjad Pourkhorshidi & Cesare Sangiorgi & Daniele Torreggiani & Patrizia Tassinari, 2020. "Using Recycled Aggregates from Construction and Demolition Waste in Unbound Layers of Pavements," Sustainability, MDPI, vol. 12(22), pages 1-19, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Enrico Quagliarini & Marta Carosi & Stefano Lenci, 2023. "Novel Sustainable Masonry from Ancient Construction Techniques by Reusing Waste Modern Tiles," Sustainability, MDPI, vol. 15(6), pages 1-15, March.
    2. Rafael Robayo-Salazar & Fabio Martínez & Armando Vargas & Ruby Mejía de Gutiérrez, 2023. "3D Printing of Hybrid Cements Based on High Contents of Powders from Concrete, Ceramic and Brick Waste Chemically Activated with Sodium Sulphate (Na 2 SO 4 )," Sustainability, MDPI, vol. 15(13), pages 1-21, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Enrico Quagliarini & Marta Carosi & Stefano Lenci, 2023. "Novel Sustainable Masonry from Ancient Construction Techniques by Reusing Waste Modern Tiles," Sustainability, MDPI, vol. 15(6), pages 1-15, March.
    2. Paulo Miguel Pereira & Castorina Silva Vieira, 2022. "A Literature Review on the Use of Recycled Construction and Demolition Materials in Unbound Pavement Applications," Sustainability, MDPI, vol. 14(21), pages 1-28, October.
    3. Ahmed Hassan Saad & Haslinda Nahazanan & Badronnisa Yusuf & Siti Fauziah Toha & Ahmed Alnuaim & Ahmed El-Mouchi & Mohamed Elseknidy & Angham Ali Mohammed, 2023. "A Systematic Review of Machine Learning Techniques and Applications in Soil Improvement Using Green Materials," Sustainability, MDPI, vol. 15(12), pages 1-37, June.
    4. Furszyfer Del Rio, Dylan D. & Sovacool, Benjamin K. & Foley, Aoife M. & Griffiths, Steve & Bazilian, Morgan & Kim, Jinsoo & Rooney, David, 2022. "Decarbonizing the ceramics industry: A systematic and critical review of policy options, developments and sociotechnical systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    5. Penghui Wen & Chaohui Wang & Liang Song & Liangliang Niu & Haoyu Chen, 2021. "Durability and Sustainability of Cement-Stabilized Materials Based on Utilization of Waste Materials: A Literature Review," Sustainability, MDPI, vol. 13(21), pages 1-27, October.
    6. Ecem Nur Barisoglu & Jannes Meeusen & Diederik Snoeck & Ramiro Daniel Verástegui-Flores & Gemmina Di Emidio, 2023. "Feasibility of Using Recycled Construction and Demolition Materials for Deep Soil Mixing," Sustainability, MDPI, vol. 15(6), pages 1-13, March.
    7. Jin, Ruoyu & Li, Bo & Zhou, Tongyu & Wanatowski, Dariusz & Piroozfar, Poorang, 2017. "An empirical study of perceptions towards construction and demolition waste recycling and reuse in China," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 86-98.
    8. Ambroise Lachat & Konstantinos Mantalovas & Tiffany Desbois & Oumaya Yazoghli-Marzouk & Anne-Sophie Colas & Gaetano Di Mino & Adélaïde Feraille, 2021. "From Buildings’ End of Life to Aggregate Recycling under a Circular Economic Perspective: A Comparative Life Cycle Assessment Case Study," Sustainability, MDPI, vol. 13(17), pages 1-25, August.
    9. Yunpeng Zhao & Dimitrios Goulias & Luca Tefa & Marco Bassani, 2021. "Life Cycle Economic and Environmental Impacts of CDW Recycled Aggregates in Roadway Construction and Rehabilitation," Sustainability, MDPI, vol. 13(15), pages 1-17, August.
    10. Arnas Majumder & Flavio Stochino & Andrea Frattolillo & Monica Valdes & Gianluca Gatto & Enzo Martinelli, 2024. "Sustainable Retrofitting Solutions: Evaluating the Performance of Jute Fiber Nets and Composite Mortar in Natural Fiber Textile Reinforced Mortars," Sustainability, MDPI, vol. 16(3), pages 1-18, January.
    11. Hongyu Long & Hongyong Liu & Xingwei Li & Longjun Chen, 2020. "An Evolutionary Game Theory Study for Construction and Demolition Waste Recycling Considering Green Development Performance under the Chinese Government’s Reward–Penalty Mechanism," IJERPH, MDPI, vol. 17(17), pages 1-21, August.
    12. Luorui Zheng & Yingzhen Li & Cheng Qian & Yanjun Du, 2023. "Carbon Emission Evaluation of Roadway Construction at Contaminated Sites Based on Life Cycle Assessment Method," Sustainability, MDPI, vol. 15(16), pages 1-14, August.
    13. Hua Luo & José Aguiar & Xiaoqi Wan & Yinggu Wang & Sandra Cunha & Zhiyou Jia, 2024. "Application of Aggregates from Construction and Demolition Wastes in Concrete: Review," Sustainability, MDPI, vol. 16(10), pages 1-28, May.
    14. Abdulmalek K. Badraddin & Rahimi A. Rahman & Saud Almutairi & Muneera Esa, 2021. "Main Challenges to Concrete Recycling in Practice," Sustainability, MDPI, vol. 13(19), pages 1-15, October.
    15. Nehal Elshaboury & Abobakr Al-Sakkaf & Eslam Mohammed Abdelkader & Ghasan Alfalah, 2022. "Construction and Demolition Waste Management Research: A Science Mapping Analysis," IJERPH, MDPI, vol. 19(8), pages 1-25, April.
    16. Zhikun Ding & Wanqi Nie & Huanyu Wu, 2022. "Investigating the connection between stakeholders’ purchase intention and perceived value of construction and demolition waste recycled products," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(7), pages 9285-9303, July.
    17. Youli Lin & Farshid Maghool & Arul Arulrajah & Suksun Horpibulsuk, 2021. "Engineering Characteristics and Environmental Risks of Utilizing Recycled Aluminum Salt Slag and Recycled Concrete as a Sustainable Geomaterial," Sustainability, MDPI, vol. 13(19), pages 1-18, September.
    18. Gigliola D’Angelo & Marina Fumo & Mercedes del Rio Merino & Ilaria Capasso & Assunta Campanile & Fabio Iucolano & Domenico Caputo & Barbara Liguori, 2021. "Crushed Bricks: Demolition Waste as a Sustainable Raw Material for Geopolymers," Sustainability, MDPI, vol. 13(14), pages 1-12, July.
    19. Barbara Sadowska-Buraczewska & Małgorzata Grzegorczyk-Frańczak, 2021. "Sustainable Recycling of High-Strength Concrete as an Alternative to Natural Aggregates in Building Structures," Sustainability, MDPI, vol. 13(8), pages 1-16, April.
    20. Li Wang & Yanhong Lv & Siyu Huang & Yu Liu & Xinrong Li, 2023. "The Evolution of Research on C&D Waste and Sustainable Development of Resources: A Bibliometric Study," Sustainability, MDPI, vol. 15(12), pages 1-20, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:15:p:9685-:d:881801. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.