IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i15p9596-d880490.html
   My bibliography  Save this article

The Temporal Evolution of Physical Water Consumption and Virtual Water Flow in Beijing, China

Author

Listed:
  • Hongwei Huang

    (College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling 712100, China)

  • Shan Jiang

    (State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China)

  • Xuerui Gao

    (Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China)

  • Yong Zhao

    (State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China)

  • Lixing Lin

    (College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling 712100, China)

  • Jichao Wang

    (College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling 712100, China)

  • Xinxueqi Han

    (College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling 712100, China)

Abstract

With the rapid development of the socio-economic system and the close connection of inter-regional trade, the physical water consumption in production and the virtual water flow associated with inter-regional trade are both have a significant impact on local water systems, especially in megacities. Beijing is the political, economic and cultural center of China, which is a megacity that has severe water scarcity. To evaluate the status-quo of local water consumption and propose the countermeasures, this study quantitatively analyzed the evolution trend of physical water consumption and the virtual water flow in Beijing. The results show that the total physical water consumption in Beijing decreased from 2.43 billion m 3 (2002) to 1.98 billion m 3 (2017), while the net virtual water input increased from 1.76 billion m 3 (2002) to 3.09 billion m 3 (2017), which was mainly embedded in agricultural and industrial products. This study also reveals the equal importance of physical water and virtual water in ensuring the regional water security and sustainable economic development. In view of poor water resource endowment, Beijing should conduct the coupled management of physical water and virtual water to alleviate the local water shortage, i.e., to receive more virtual water embedded in agricultural and industrial products, and allocate the limited local water resources to domestic use and high-benefit sectors.

Suggested Citation

  • Hongwei Huang & Shan Jiang & Xuerui Gao & Yong Zhao & Lixing Lin & Jichao Wang & Xinxueqi Han, 2022. "The Temporal Evolution of Physical Water Consumption and Virtual Water Flow in Beijing, China," Sustainability, MDPI, vol. 14(15), pages 1-15, August.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:15:p:9596-:d:880490
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/15/9596/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/15/9596/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Md. Islam & Taikan Oki & Shinjiro Kanae & Naota Hanasaki & Yasushi Agata & Kei Yoshimura, 2007. "A grid-based assessment of global water scarcity including virtual water trading," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(1), pages 19-33, January.
    2. Siliang Guo & Heng Ma, 2022. "Can the Spatial Function Division of Urbanization Promote Regional Coordinated Development? Evidence from the Yangtze River Economic Belt in China," Sustainability, MDPI, vol. 14(12), pages 1-28, June.
    3. He, Shuang & Zhang, Jian & Zhang, Juliang & Cheng, T.C.E., 2022. "Production/inventory competition between firms with fixed-proportions co-production systems," European Journal of Operational Research, Elsevier, vol. 299(2), pages 497-509.
    4. Guan, Dabo & Hubacek, Klaus, 2007. "Assessment of regional trade and virtual water flows in China," Ecological Economics, Elsevier, vol. 61(1), pages 159-170, February.
    5. Xuerui Gao & Miao Sun & Yong Zhao & Pute Wu & Shan Jiang & La Zhuo, 2019. "The Cognitive Framework of the Interaction between the Physical and Virtual Water and the Strategies for Sustainable Coupling Management," Sustainability, MDPI, vol. 11(9), pages 1-18, May.
    6. Erik Dietzenbacher & Esther Velazquez, 2007. "Analysing Andalusian Virtual Water Trade in an Input-Output Framework," Regional Studies, Taylor & Francis Journals, vol. 41(2), pages 185-196.
    7. Kumiko Kondo, 2005. "Economic analysis of water resources in Japan: using factor decomposition analysis based on input-output tables," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 7(2), pages 109-129, June.
    8. Zhuoyue Peng & Hao Wu & Maohua Ding & Min Li & Xi Huang & Rui Zheng & Lin Xu, 2021. "Ecological Compensation Standard of a Water-Receiving Area in an Inter-Basin Water Diversion Based on Ecosystem Service Value and Public Willingness: A Case Study of Beijing," Sustainability, MDPI, vol. 13(9), pages 1-15, May.
    9. Chini, Christopher M. & Stillwell, Ashlynn S., 2020. "The changing virtual water trade network of the European electric grid," Applied Energy, Elsevier, vol. 260(C).
    10. Zhang, Chao & Anadon, Laura Diaz, 2014. "A multi-regional input–output analysis of domestic virtual water trade and provincial water footprint in China," Ecological Economics, Elsevier, vol. 100(C), pages 159-172.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xin’er Ning & Yanjun Zhang & Hongbo Xu & Wenxun Dong & Yuanxin Song & Liping Zhang, 2023. "Inter-Industry Transfer of Intermediate Virtual Water Scarcity Risk: The Case of China," Sustainability, MDPI, vol. 15(3), pages 1-19, February.
    2. Golden Odey & Bashir Adelodun & Qudus Adeyi & Akinsoji Adisa Hammed & Salau Rahmon Abiodun & Kyung Sook Choi, 2024. "Quantifying Resource Nexus: Virtual Water Flows, Water Stress Indices, and Unsustainable Import Fraction in South Korea’s Grain Trade Landscape," Sustainability, MDPI, vol. 16(6), pages 1-19, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guangyao Deng & Liujuan Wang & Yanan Song, 2015. "Effect of Variation of Water-Use Efficiency on Structure of Virtual Water Trade - Analysis Based on Input–Output Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2947-2965, June.
    2. Ehsan Qasemipour & Ali Abbasi & Farhad Tarahomi, 2020. "Water-Saving Scenarios Based on Input–Output Analysis and Virtual Water Concept: A Case in Iran," Sustainability, MDPI, vol. 12(3), pages 1-16, January.
    3. Mubako, Stanley & Lahiri, Sajal & Lant, Christopher, 2013. "Input–output analysis of virtual water transfers: Case study of California and Illinois," Ecological Economics, Elsevier, vol. 93(C), pages 230-238.
    4. Esther Velázquez & Cristina Madrid & María Beltrán, 2011. "Rethinking the Concepts of Virtual Water and Water Footprint in Relation to the Production–Consumption Binomial and the Water–Energy Nexus," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(2), pages 743-761, January.
    5. A. Hassan & M. Y. Saari & T. H. Tengku Ismail, 2017. "Virtual water trade in industrial products: evidence from Malaysia," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(3), pages 877-894, June.
    6. Ehsan Qasemipour & Farhad Tarahomi & Markus Pahlow & Seyed Saeed Malek Sadati & Ali Abbasi, 2020. "Assessment of Virtual Water Flows in Iran Using a Multi-Regional Input-Output Analysis," Sustainability, MDPI, vol. 12(18), pages 1-18, September.
    7. Chen, G.Q. & Chen, Z.M., 2011. "Greenhouse gas emissions and natural resources use by the world economy: Ecological input–output modeling," Ecological Modelling, Elsevier, vol. 222(14), pages 2362-2376.
    8. Xueting Zhao, 2014. "China's Inter-regional Trade of Virtual Water: a Multi-regional Input-output Modeling," Working Papers Working Paper 2014-04, Regional Research Institute, West Virginia University.
    9. María Jesús Beltrán & Esther Velázquez, 2011. "Del metabolismo social al metabolismo hídrico," Documentos de Trabajo de la Asociación de Economía Ecológica en España 01_2011, Asociación de Economía Ecológica en España.
    10. Lenzen, Manfred & Bhaduri, Anik & Moran, Daniel & Kanemoto, Keiichiro & Bekchanov, Maksud & Geschke, Arne & Foran, Barney, 2012. "The role of scarcity in global virtual water flows," Discussion Papers 133478, University of Bonn, Center for Development Research (ZEF).
    11. Guiliang Tian & Xiaosheng Han & Chen Zhang & Jiaojiao Li & Jining Liu, 2020. "Virtual Water Flows Embodied in International and Interprovincial Trade of Yellow River Basin: A Multiregional Input-Output Analysis," Sustainability, MDPI, vol. 12(3), pages 1-21, February.
    12. Dennis Wichelns, 2010. "Virtual Water: A Helpful Perspective, but not a Sufficient Policy Criterion," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(10), pages 2203-2219, August.
    13. Liu, Qiaoling & Wang, Qi, 2015. "Reexamine SO2 emissions embodied in China's exports using multiregional input–output analysis," Ecological Economics, Elsevier, vol. 113(C), pages 39-50.
    14. Valeria Cosmo & Marie Hyland & Maria Llop, 2014. "Disentangling Water Usage in the European Union: A Decomposition Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(5), pages 1463-1479, March.
    15. Xueting Zhao & Randall W. Jackson, 2016. "China’s Inter-Regional Trade of Virtual Water — A Multi-Regional Input–Output Table Based Analysis," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 2(02), pages 1-28, June.
    16. Zhao, X. & Chen, B. & Yang, Z.F., 2009. "National water footprint in an input–output framework—A case study of China 2002," Ecological Modelling, Elsevier, vol. 220(2), pages 245-253.
    17. Bae, Jinwon & Dall'erba, Sandy, 2018. "Crop Production, Export of Virtual Water and Water-saving Strategies in Arizona," Ecological Economics, Elsevier, vol. 146(C), pages 148-156.
    18. Han-Shen Chen, 2015. "Using Water Footprints for Examining the Sustainable Development of Science Parks," Sustainability, MDPI, vol. 7(5), pages 1-21, May.
    19. Sun, J.X. & Yin, Y.L. & Sun, S.K. & Wang, Y.B. & Yu, X. & Yan, K., 2021. "Review on research status of virtual water: The perspective of accounting methods, impact assessment and limitations," Agricultural Water Management, Elsevier, vol. 243(C).
    20. Cazcarro, Ignacio & Duarte, Rosa & Sánchez-Chóliz, Julio, 2013. "Economic growth and the evolution of water consumption in Spain: A structural decomposition analysis," Ecological Economics, Elsevier, vol. 96(C), pages 51-61.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:15:p:9596-:d:880490. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.