IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i15p9447-d878028.html
   My bibliography  Save this article

Assessment of a Cocoa-Based Agroforestry System in the Southwest of Colombia

Author

Listed:
  • William Ballesteros-Possú

    (Department of Natural Resources and Agroforestry Systems, Universidad de Nariño, Ciudadela Universitaria Torobajo, San Juan de Pasto 52001, Colombia)

  • Juan Carlos Valencia

    (Agricultural Sciences School, Universidad Abierta y a Distancia—UNAD, Tumaco 528509, Colombia)

  • Jorge Fernando Navia-Estrada

    (Department of Natural Resources and Agroforestry Systems, Universidad de Nariño, Ciudadela Universitaria Torobajo, San Juan de Pasto 52001, Colombia)

Abstract

Cocoa-based agroforests play an important role in farmer livelihood and the global environment; however, despite these facts, their low yields and tree aging put at risk their fate. This project investigated the carbon storage potential, productivity, and economics of different agroforestry arrangements of cocoa ( Theobroma cacao ) with Melina ( Gmelina arborea ) trees, in the southwest of Colombia. We established the experiment under a Randomized Complete Blocks design with seven treatments and three repetitions. Different allometric models were tested. Allometric models were made for G. arborea trees with dbh, ranging between 30.24 and 50.11 cm. The total carbon accumulation fluctuated between 49.2 (Treatment 4) and 88.5 t ha −1 (Treatment 2), soil organic matter (SOM) ranged between 9 and 17%, bulk density decreased from 0.83 to 0.77 g cm −3 . Cocoa yield ranged between 311 kg ha −1 year −1 (Treatment 7, traditional farm) and 922 kg ha −1 year −1 (Treatment 6). Treatment 6 showed the best performance with a net present value (NPV) of COP 1,446,467 (US $337.6), an internal rate of return (IRR) of 42%, and a cost-benefit ratio (B/C) of 1.67%. The benefits of AFS were also evidenced in some of the physical and chemical soil properties. Despite local marginality, these cocoa agroforest arrangements are a viable alternative to improve the traditional (local) cocoa systems because cacao agroforest arrangements increased cacao yield and carbon storage becoming a suitable alternative to improve traditional systems.

Suggested Citation

  • William Ballesteros-Possú & Juan Carlos Valencia & Jorge Fernando Navia-Estrada, 2022. "Assessment of a Cocoa-Based Agroforestry System in the Southwest of Colombia," Sustainability, MDPI, vol. 14(15), pages 1-17, August.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:15:p:9447-:d:878028
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/15/9447/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/15/9447/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Janina Grabs & Sophia Louise Carodenuto, 2021. "Traders as sustainability governance actors in global food supply chains: A research agenda," Business Strategy and the Environment, Wiley Blackwell, vol. 30(2), pages 1314-1332, February.
    2. Busquet, Milande & Bosma, Niels & Hummels, Harry, 2021. "A multidimensional perspective on child labor in the value chain: The case of the cocoa value chain in West Africa," World Development, Elsevier, vol. 146(C).
    3. Verena Seufert & Navin Ramankutty & Jonathan A. Foley, 2012. "Comparing the yields of organic and conventional agriculture," Nature, Nature, vol. 485(7397), pages 229-232, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tennhardt, Lina & Lazzarini, Gianna & Weisshaidinger, Rainer & Schader, Christian, 2022. "Do environmentally-friendly cocoa farms yield social and economic co-benefits?," Ecological Economics, Elsevier, vol. 197(C).
    2. Jie Zhao & Ji Chen & Damien Beillouin & Hans Lambers & Yadong Yang & Pete Smith & Zhaohai Zeng & Jørgen E. Olesen & Huadong Zang, 2022. "Global systematic review with meta-analysis reveals yield advantage of legume-based rotations and its drivers," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Movedi, Ermes & Valiante, Daniele & Colosio, Alessandro & Corengia, Luca & Cossa, Stefano & Confalonieri, Roberto, 2022. "A new approach for modeling crop-weed interaction targeting management support in operational contexts: A case study on the rice weeds barnyardgrass and red rice," Ecological Modelling, Elsevier, vol. 463(C).
    4. Wang, Linlin & Li, Qiang & Coulter, Jeffrey A. & Xie, Junhong & Luo, Zhuzhu & Zhang, Renzhi & Deng, Xiping & Li, Linglin, 2020. "Winter wheat yield and water use efficiency response to organic fertilization in northern China: A meta-analysis," Agricultural Water Management, Elsevier, vol. 229(C).
    5. Lucia Mancini, 2013. "Conventional, Organic and Polycultural Farming Practices: Material Intensity of Italian Crops and Foodstuffs," Resources, MDPI, vol. 2(4), pages 1-23, December.
    6. Daniel P. Roberts & Autar K. Mattoo, 2018. "Sustainable Agriculture—Enhancing Environmental Benefits, Food Nutritional Quality and Building Crop Resilience to Abiotic and Biotic Stresses," Agriculture, MDPI, vol. 8(1), pages 1-24, January.
    7. Atanu Mukherjee & Emmanuel C. Omondi & Paul R. Hepperly & Rita Seidel & Wade P. Heller, 2020. "Impacts of Organic and Conventional Management on the Nutritional Level of Vegetables," Sustainability, MDPI, vol. 12(21), pages 1-25, October.
    8. Seck, Abdoulaye & Thiam, Djiby Racine, 2022. "Understanding consumer attitudes to and valuation of organic food in Sub-Saharan Africa: A double-bound contingent method applied in Dakar, Senegal," African Journal of Agricultural and Resource Economics, African Association of Agricultural Economists, vol. 17(1), March.
    9. Schindele, Stephan & Trommsdorff, Maximilian & Schlaak, Albert & Obergfell, Tabea & Bopp, Georg & Reise, Christian & Braun, Christian & Weselek, Axel & Bauerle, Andrea & Högy, Petra & Goetzberger, Ado, 2020. "Implementation of agrophotovoltaics: Techno-economic analysis of the price-performance ratio and its policy implications," Applied Energy, Elsevier, vol. 265(C).
    10. Sadowski, Arkadiusz & Wojcieszak-Zbierska, Monika Małgorzata & Zmyślona, Jagoda, 2024. "Agricultural production in the least developed countries and its impact on emission of greenhouse gases – An energy approach," Land Use Policy, Elsevier, vol. 136(C).
    11. Kalaitzandonakes, Nicholas & Lusk, Jayson & Magnier, Alexandre, 2018. "The price of non-genetically modified (non-GM) food," Food Policy, Elsevier, vol. 78(C), pages 38-50.
    12. Janet MacFall & Joanna Lelekacs & Todd LeVasseur & Steve Moore & Jennifer Walker, 2015. "Toward resilient food systems through increased agricultural diversity and local sourcing in the Carolinas," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 5(4), pages 608-622, December.
    13. Jakob Keller & Martin Jung & Rainer Lasch, 2022. "Sustainability Governance: Insights from a Cocoa Supply Chain," Sustainability, MDPI, vol. 14(17), pages 1-23, August.
    14. Nesar Ahmed & Shirley Thompson & Giovanni M. Turchini, 2020. "Organic aquaculture productivity, environmental sustainability, and food security: insights from organic agriculture," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 12(6), pages 1253-1267, December.
    15. Bourceret, Amélie & Accatino, Francesco & Robert, Corinne, 2024. "A modeling framework of a territorial socio-ecosystem to study the trajectories of change in agricultural phytosanitary practices," Ecological Modelling, Elsevier, vol. 494(C).
    16. SIngh Verma, Juhee & Sharma, Pritee, 2019. "Potential of Organic Farming to Mitigate Climate Change and Increase Small Farmers’ Welfare," MPRA Paper 99994, University Library of Munich, Germany.
    17. Felizitas Winkhart & Thomas Mösl & Harald Schmid & Kurt-Jürgen Hülsbergen, 2022. "Effects of Organic Maize Cropping Systems on Nitrogen Balances and Nitrous Oxide Emissions," Agriculture, MDPI, vol. 12(7), pages 1-30, June.
    18. Delate, Kathleen & Cambardella, Cynthia & Chase, Craig & Turnbull, Robert, 2015. "A Review of Long-Term Organic Comparison Trials in the U.S," Sustainable Agriculture Research, Canadian Center of Science and Education, vol. 4(3 Special).
    19. Kalle Margus & Viacheslav Eremeev & Evelin Loit & Eve Runno-Paurson & Erkki Mäeorg & Anne Luik & Liina Talgre, 2022. "Impact of Farming System on Potato Yield and Tuber Quality in Northern Baltic Sea Climate Conditions," Agriculture, MDPI, vol. 12(4), pages 1-12, April.
    20. Malard, Julien J & Adamowski, Jan Franklin & Rojas Díaz, Marcela & Nassar, Jessica Bou & Anandaraja, Nallusamy & Tuy, Héctor & Arévalo-Rodriguez, Luís Andrés & Melgar-Quiñonez, Hugo Ramiro, 2020. "Agroecological food web modelling to evaluate and design organic and conventional agricultural systems," Ecological Modelling, Elsevier, vol. 421(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:15:p:9447-:d:878028. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.