IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i15p9199-d872946.html
   My bibliography  Save this article

Human Comfort Model of Noise and Vibration for Sustainable Design of the Turboprop Aircraft Cabin

Author

Listed:
  • Geetika Aggarwal

    (Department of Engineering, Nottingham Trent University, Nottingham NG11 8NS, UK)

  • Neil Mansfield

    (Department of Engineering, Nottingham Trent University, Nottingham NG11 8NS, UK)

  • Frederique Vanheusden

    (Department of Engineering, Nottingham Trent University, Nottingham NG11 8NS, UK)

  • Steve Faulkner

    (Department of Engineering, Nottingham Trent University, Nottingham NG11 8NS, UK)

Abstract

In recent years, the aircraft industry has made significant advancements in technology in the context of fuel consumption, maintenance, and performance. The most promising developments in terms of fuel efficiency and minimization of emissions are through future generations of turboprop aircraft (i.e., those generating thrust from a propeller). One important drawback with turboprop aircraft is that they tend to have noisier cabins, and there is an increased level of discomfort from vibration due to the tonality that is present. Human comfort perception is a key factor for aircraft manufacturers in the design of airframes and aircraft interiors. Noise and vibration are major sources of discomfort in aircraft cabins; hence, aircraft manufacturers are seeking to estimate passenger discomfort based on noise and vibration measurements in order to optimize the aircraft design. The aim of this research study is focused on building a comfort model for aircraft to enable designers and engineers to optimize the passengers’ traveling experience. In this paper, an experimental laboratory study is presented, determining the relative importance of noise and vibration for the turboprop aircraft cabin. The results show that with the increase in noise levels and vibration magnitudes, the overall human discomfort also increased. A linear comfort model is presented, allowing for the prediction of overall discomfort from measurements of turboprop noise and vibration for the optimization of aircraft cabins.

Suggested Citation

  • Geetika Aggarwal & Neil Mansfield & Frederique Vanheusden & Steve Faulkner, 2022. "Human Comfort Model of Noise and Vibration for Sustainable Design of the Turboprop Aircraft Cabin," Sustainability, MDPI, vol. 14(15), pages 1-12, July.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:15:p:9199-:d:872946
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/15/9199/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/15/9199/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Babikian, Raffi & Lukachko, Stephen P. & Waitz, Ian A., 2002. "The historical fuel efficiency characteristics of regional aircraft from technological, operational, and cost perspectives," Journal of Air Transport Management, Elsevier, vol. 8(6), pages 389-400.
    2. Rajendran, Suchithra & Srinivas, Sharan, 2020. "Air taxi service for urban mobility: A critical review of recent developments, future challenges, and opportunities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 143(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pons-Prats, Jordi & Živojinović, Tanja & Kuljanin, Jovana, 2022. "On the understanding of the current status of urban air mobility development and its future prospects: Commuting in a flying vehicle as a new paradigm," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    2. He, Xinyu & He, Fang & Li, Lishuai & Zhang, Lei & Xiao, Gang, 2022. "A route network planning method for urban air delivery," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    3. Zou, Bo & Elke, Matthew & Hansen, Mark & Kafle, Nabin, 2014. "Evaluating air carrier fuel efficiency in the US airline industry," Transportation Research Part A: Policy and Practice, Elsevier, vol. 59(C), pages 306-330.
    4. Adeline Montlaur & Luis Delgado & César Trapote-Barreira, 2021. "Analytical Models for CO 2 Emissions and Travel Time for Short-to-Medium-Haul Flights Considering Available Seats," Sustainability, MDPI, vol. 13(18), pages 1-23, September.
    5. Brunelli, Matteo & Ditta, Chiara Caterina & Postorino, Maria Nadia, 2023. "New infrastructures for Urban Air Mobility systems: A systematic review on vertiport location and capacity," Journal of Air Transport Management, Elsevier, vol. 112(C).
    6. Rajendran, Suchithra & Srinivas, Sharan & Grimshaw, Trenton, 2021. "Predicting demand for air taxi urban aviation services using machine learning algorithms," Journal of Air Transport Management, Elsevier, vol. 92(C).
    7. Benoit G. Marinus & Antoine Hauglustaine, 2020. "Data-Driven Modeling of Fuel Consumption for Turboprop-Powered Civil Airliners," Energies, MDPI, vol. 13(7), pages 1-13, April.
    8. Jin, Zhongyi & Ng, Kam K.H. & Zhang, Chenliang & Wu, Lingxiao & Li, Ang, 2024. "Integrated optimisation of strategic planning and service operations for urban air mobility systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 183(C).
    9. Pai, Vivek, 2010. "On the factors that affect airline flight frequency and aircraft size," Journal of Air Transport Management, Elsevier, vol. 16(4), pages 169-177.
    10. Long, Qi & Ma, Jun & Jiang, Feifeng & Webster, Christopher John, 2023. "Demand analysis in urban air mobility: A literature review," Journal of Air Transport Management, Elsevier, vol. 112(C).
    11. Pai, Vivek, 2009. "On the Factors that Affect Airline Flight Frequency and Aircraft Size," 50th Annual Transportation Research Forum, Portland, Oregon, March 16-18, 2009 207722, Transportation Research Forum.
    12. Jaeho Yoo & Yunseon Choe & Soo-i Rim, 2022. "Risk Perceptions Using Urban and Advanced Air Mobility (UAM/AAM) by Applying a Mixed Method Approach," Sustainability, MDPI, vol. 14(24), pages 1-14, December.
    13. Lapp, Marcial & Wikenhauser, Florian, 2012. "Incorporating aircraft efficiency measures into the tail assignment problem," Journal of Air Transport Management, Elsevier, vol. 19(C), pages 25-30.
    14. Ye Li & Qiang Cui, 2017. "Airline energy efficiency measures using the Virtual Frontier Network RAM with weak disposability," Transportation Planning and Technology, Taylor & Francis Journals, vol. 40(4), pages 479-504, May.
    15. Kinene, Alan & Birolini, Sebastian & Cattaneo, Mattia & Granberg, Tobias Andersson, 2023. "Electric aircraft charging network design for regional routes: A novel mathematical formulation and kernel search heuristic," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1300-1315.
    16. Hildemann, Moritz & Verstegen, Judith A., 2023. "3D-flight route optimization for air-taxis in urban areas with Evolutionary Algorithms and GIS," Journal of Air Transport Management, Elsevier, vol. 107(C).
    17. Fulton, Neale L. & Westcott, Mark & Emery, Stephen, 2009. "Decision support for risk assessment of mid-air collisions via population-based measures," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(2), pages 150-169, February.
    18. Chow, Clement Kong Wing & Tsui, Wai Hong Kan, 2017. "Organizational learning, operating costs and airline consolidation policy in the Chinese airline industry," Journal of Air Transport Management, Elsevier, vol. 63(C), pages 108-118.
    19. T. Tarnopolskaya & N. Fulton & H. Maurer, 2012. "Synthesis of Optimal Bang–Bang Control for Cooperative Collision Avoidance for Aircraft (Ships) with Unequal Linear Speeds," Journal of Optimization Theory and Applications, Springer, vol. 155(1), pages 115-144, October.
    20. Velaz-Acera, Néstor & Álvarez-García, Javier & Borge-Diez, David, 2023. "Economic and emission reduction benefits of the implementation of eVTOL aircraft with bi-directional flow as storage systems in islands and case study for Canary Islands," Applied Energy, Elsevier, vol. 331(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:15:p:9199-:d:872946. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.