IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i14p8323-d857840.html
   My bibliography  Save this article

Compound Positioning Method for Connected Electric Vehicles Based on Multi-Source Data Fusion

Author

Listed:
  • Lin Wang

    (School of Transportation, Southeast University, Nanjing 211189, China
    Research Institute of Highway Ministry of Transport, Beijing 100088, China)

  • Zhenhua Li

    (Research Institute of Highway Ministry of Transport, Beijing 100088, China
    Key Laboratory of Transport Industry of Intelligent Transportation Systems, Research Institute of Highway Ministry of Transport, Beijing 100088, China)

  • Qinglan Fan

    (Research Institute of Highway Ministry of Transport, Beijing 100088, China
    Key Laboratory of Transport Industry of Intelligent Transportation Systems, Research Institute of Highway Ministry of Transport, Beijing 100088, China)

Abstract

With the development of electrified transportation, electric vehicle positioning technology plays an important role in improving comprehensive urban management ability. However, the traditional positioning methods based on the global positioning system (GPS) or roadside single sensors make it hard to meet requirements of high-precision positioning. Considering the advantages of various sensors in the cooperative vehicle-infrastructure system (CVIS), this paper proposes a compound positioning method for connected electric vehicles (CEVs) based on multi-source data fusion technology, which can provide data support for the CVIS. Firstly, Dempster-Shafer (D-S) evidence theory is used to fuse the position probability in multi-sensor detection information, and screen vehicle existence information. Then, a hybrid neural network model based on a long short-term (LSTM) framework is constructed to fit the mapping relationship between measured and undetermined coordinates. Moreover, the fused data are proceeded as the input of the hybrid LSTM model, which can export the vehicular real-time compound positioning information. Finally, an intersection in Shijingshan District, Beijing is selected as the test field for trajectory information collection of CEVs. The experimental results have shown that the uncertainty of fusion data can be reduced to 0.38% of the original level, and the maximum error of real-time positioning accuracy is less than 0.0905 m based on the hybrid LSTM model, which can verify the effectiveness of the model.

Suggested Citation

  • Lin Wang & Zhenhua Li & Qinglan Fan, 2022. "Compound Positioning Method for Connected Electric Vehicles Based on Multi-Source Data Fusion," Sustainability, MDPI, vol. 14(14), pages 1-23, July.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:14:p:8323-:d:857840
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/14/8323/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/14/8323/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Min, Qingyun & Li, Junqiu & Liu, Bo & Li, Jianwei & Sun, Fengchun & Sun, Chao, 2021. "Guided model predictive control for connected vehicles with hybrid energy systems," Energy, Elsevier, vol. 230(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Hongwen & Han, Mo & Liu, Wei & Cao, Jianfei & Shi, Man & Zhou, Nana, 2022. "MPC-based longitudinal control strategy considering energy consumption for a dual-motor electric vehicle," Energy, Elsevier, vol. 253(C).
    2. Yao, Yongming & Wang, Jie & Zhou, Zhicong & Li, Hang & Liu, Huiying & Li, Tianyu, 2023. "Grey Markov prediction-based hierarchical model predictive control energy management for fuel cell/battery hybrid unmanned aerial vehicles," Energy, Elsevier, vol. 262(PA).
    3. Cui, Wei & Cui, Naxin & Li, Tao & Cui, Zhongrui & Du, Yi & Zhang, Chenghui, 2022. "An efficient multi-objective hierarchical energy management strategy for plug-in hybrid electric vehicle in connected scenario," Energy, Elsevier, vol. 257(C).
    4. Liu, Bo & Sun, Chao & Wang, Bo & Liang, Weiqiang & Ren, Qiang & Li, Junqiu & Sun, Fengchun, 2022. "Bi-level convex optimization of eco-driving for connected Fuel Cell Hybrid Electric Vehicles through signalized intersections," Energy, Elsevier, vol. 252(C).
    5. Zhou, Wei & Cai, Xuan & Chen, Yaoqi & Li, Junqiu & Peng, Xiaoyan, 2022. "Decoding the optimal charge depletion behavior in energy domain for predictive energy management of series plug-in hybrid electric vehicle," Applied Energy, Elsevier, vol. 316(C).
    6. Luis B. Elvas & Joao C Ferreira, 2021. "Intelligent Transportation Systems for Electric Vehicles," Energies, MDPI, vol. 14(17), pages 1-9, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:14:p:8323-:d:857840. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.