IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i13p8024-d852938.html
   My bibliography  Save this article

Metal Contents and Pollution Indices Assessment of Surface Water, Soil, and Sediment from the Arieș River Basin Mining Area, Romania

Author

Listed:
  • Ana Moldovan

    (INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Street, 400293 Cluj-Napoca, Romania
    Faculty of Materials and Environmental Engineering, Technical University, 103-105 Muncii Boulevard, 400641 Cluj-Napoca, Romania)

  • Anamaria Iulia Török

    (INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Street, 400293 Cluj-Napoca, Romania)

  • Eniko Kovacs

    (INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Street, 400293 Cluj-Napoca, Romania
    Faculty of Horticulture, University of Agricultural Sciences and Veterinary Medicine, 3-5 Manastur Street, 400372 Cluj-Napoca, Romania)

  • Oana Cadar

    (INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Street, 400293 Cluj-Napoca, Romania)

  • Ionuț Cornel Mirea

    (Department of Geology and Paleontology, Emil Racovitza Institute of Speleology, Calea 13 Septembrie, 050711 Bucharest, Romania)

  • Valer Micle

    (Faculty of Materials and Environmental Engineering, Technical University, 103-105 Muncii Boulevard, 400641 Cluj-Napoca, Romania)

Abstract

The current study was conducted to assess the level and spatial distribution of metal pollution in surface water, soil, and sediment samples from the Arieș River basin, located in central Romania, an area impacted by various mining and industrial operations. Several pollution indices, spatial distributions, cluster analyses, principal component analyses, and heat maps were applied for evaluating the contamination level with Ni, Cu, Zn, Cd, Pb, Mn, As, and Hg in the area. Based on the results of the Heavy-Metal Pollution Index and of the Heavy-Metal Evaluation Index of the surface-water samples, the middle part of the Arieș River basin, near and downstream of the gold mine impoundment, was characterized by high pollution levels. The metal concentration was higher near the tailing impoundment, with increased levels of Cu, Ni, Zn, and Pb in the soil samples and As, Cd, Pb, Na, K, Ca, Mn, and Al in the sediment samples. Ca (23.7–219 mg/L), Mg (2.55–18.30 mg/L), K (0.64–14.70 mg/L), Al (0.06–22.80 mg/L), and Mn (0.03–22.40 mg/L) had the most remarkable spatial variation among the surface-water samples, while various metal contents fluctuated strongly among the sampling locations. Al varied from 743 to 19.8 mg/kg, Fe from 529 to 11.4 mg/kg, Ca from 2316 to 11.8 mg/kg, and Mg from 967 to 2547 mg/kg in the soil samples, and Al varied from 3106 to 8022 mg/kg, Fe from 314 to 5982 mg/kg, Ca from 1367 to 8308 mg/kg, and Mg from 412 to 1913 mg/kg in the sediment samples. The Potential Ecological Risk Index values for soil and sediments were in the orders Cu > Ni > Pb > Hg > Cr > As > Mn > Zn > Cd and As > Cu > Cr > Cd > Pb > Ni > Hg > Mn > Zn, respectively, and the highest values were found around the gold mine impoundment.

Suggested Citation

  • Ana Moldovan & Anamaria Iulia Török & Eniko Kovacs & Oana Cadar & Ionuț Cornel Mirea & Valer Micle, 2022. "Metal Contents and Pollution Indices Assessment of Surface Water, Soil, and Sediment from the Arieș River Basin Mining Area, Romania," Sustainability, MDPI, vol. 14(13), pages 1-21, June.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:13:p:8024-:d:852938
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/13/8024/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/13/8024/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lu, Jingzhao & Lu, Hongwei & Wang, Weipeng & Feng, SanSan & Lei, Kaiwen, 2021. "Ecological risk assessment of heavy metal contamination of mining area soil based on land type changes: An information network environ analysis," Ecological Modelling, Elsevier, vol. 455(C).
    2. Danica Fazekašová & Juraj Fazekaš, 2020. "Soil Quality and Heavy Metal Pollution Assessment of Iron Ore Mines in Nizna Slana (Slovakia)," Sustainability, MDPI, vol. 12(6), pages 1-15, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maria M. Whitton & Xipeng Ren & Sung J. Yu & Andrew D. Irving & Tieneke Trotter & Yadav S. Bajagai & Dragana Stanley, 2022. "Sea Minerals Reduce Dysbiosis, Improve Pasture Productivity and Plant Morphometrics in Pasture Dieback Affected Soils," Sustainability, MDPI, vol. 14(22), pages 1-18, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xueqing Wang & Zhongyi Ding & Shaoliang Zhang & Huping Hou & Zanxu Chen & Qinyu Wu, 2022. "Spatial–Temporal Multivariate Correlation Analysis of Ecosystem Services and Ecological Risk in Areas of Overlapped Cropland and Coal Resources in the Eastern Plains, China," Land, MDPI, vol. 12(1), pages 1-16, December.
    2. Blinová Lenka & Godovčin Peter, 2021. "Importance of Recycling the Waste-Cables Containing Copper and PVC," Research Papers Faculty of Materials Science and Technology Slovak University of Technology, Sciendo, vol. 29(48), pages 1-21, June.
    3. Sukai Zhuang & Xinwei Lu, 2020. "Environmental Risk Evaluation and Source Identification of Heavy Metal(loid)s in Agricultural Soil of Shangdan Valley, Northwest China," Sustainability, MDPI, vol. 12(14), pages 1-15, July.
    4. Tingyu Fan & Jinhong Pan & Xingming Wang & Shun Wang & Akang Lu, 2022. "Ecological Risk Assessment and Source Apportionment of Heavy Metals in the Soil of an Opencast Mine in Xinjiang," IJERPH, MDPI, vol. 19(23), pages 1-14, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:13:p:8024-:d:852938. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.