IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i13p7995-d852607.html
   My bibliography  Save this article

Agricultural Structures Management Based on Nonpoint Source Pollution Control in Typical Fuel Ethanol Raw Material Planting Area

Author

Listed:
  • Guannan Cui

    (School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
    State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
    Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China)

  • Xinyu Bai

    (School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
    State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
    Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China)

  • Pengfei Wang

    (National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environment Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China)

  • Haitao Wang

    (School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
    State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
    Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China)

  • Shiyu Wang

    (School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
    State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
    Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China)

  • Liming Dong

    (School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
    State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
    Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China)

Abstract

Increasing the promotion and application of biofuel ethanol has been a national strategy in China, which in turn has affected changes in the raw material planting structure. This study analyzed the effects of agricultural land-use changes on water quality in a typical maize fuel ethanol raw material planting area. The results revealed that an increase in cultivated land and construction land would also increase the load of TN (total nitrogen) and TP (total phosphorus), while an expansion in forest land would reduce the load. As for crop structures, maize might have a remarkable positive effect on TN and TP, while rice and soybean performed in no significant manner. Furthermore, scenarios under the carbon neutralization policy and water pollution control were carried out to forecast the nonpoint source pollutants based on the quantitative relations coefficients. It was proven that maize planting was not suitable for vigorous fuel ethanol development. Reducing maize area in the Hulan River Basin was beneficial to reducing nonpoint source pollution. However, the area of maize should not be less than 187 km 2 , otherwise, the food security of the population in the basin would be threatened. Under the change in fuel ethanol policy, this study could provide scientific support for local agriculture land-use management in realizing the carbon neutralization vision and set a good example for the development of the fuel ethanol industry in other maize planting countries.

Suggested Citation

  • Guannan Cui & Xinyu Bai & Pengfei Wang & Haitao Wang & Shiyu Wang & Liming Dong, 2022. "Agricultural Structures Management Based on Nonpoint Source Pollution Control in Typical Fuel Ethanol Raw Material Planting Area," Sustainability, MDPI, vol. 14(13), pages 1-15, June.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:13:p:7995-:d:852607
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/13/7995/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/13/7995/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Arunima Sarkar Basu & Laurence William Gill & Francesco Pilla & Bidroha Basu, 2022. "Assessment of Variations in Runoff Due to Landcover Changes Using the SWAT Model in an Urban River in Dublin, Ireland," Sustainability, MDPI, vol. 14(1), pages 1-22, January.
    2. Cabrera-Jiménez, Richard & Mateo-Sanz, Josep M. & Gavaldà, Jordi & Jiménez, Laureano & Pozo, Carlos, 2022. "Comparing biofuels through the lens of sustainability: A data envelopment analysis approach," Applied Energy, Elsevier, vol. 307(C).
    3. Shengjun Yan & Xuan Wang & Yanpeng Cai & Chunhui Li & Rui Yan & Guannan Cui & Zhifeng Yang, 2018. "An Integrated Investigation of Spatiotemporal Habitat Quality Dynamics and Driving Forces in the Upper Basin of Miyun Reservoir, North China," Sustainability, MDPI, vol. 10(12), pages 1-17, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olawale Ogunrinde & Ekundayo Shittu, 2023. "Benchmarking performance of photovoltaic power plants in multiple periods," Environment Systems and Decisions, Springer, vol. 43(3), pages 489-503, September.
    2. Paparao, Jami & Soundarya, N. & Murugan, S., 2023. "Advancing green technology: Experimental study on low heat rejection engine utilizing bio-based antioxidant-doped biodiesel-diesel blends and oxy-hydrogen gas," Energy, Elsevier, vol. 283(C).
    3. Xue Zhang & Lingyun Liao & Zhengduo Xu & Jiayu Zhang & Mengwei Chi & Siren Lan & Qiaochun Gan, 2022. "Interactive Effects on Habitat Quality Using InVEST and GeoDetector Models in Wenzhou, China," Land, MDPI, vol. 11(5), pages 1-19, April.
    4. Tao Li & Rui Bao & Ling Li & Mingfang Tang & Hongbing Deng, 2023. "Temporal and Spatial Changes of Habitat Quality and Their Potential Driving Factors in Southwest China," Land, MDPI, vol. 12(2), pages 1-18, January.
    5. Arunima Sarkar Basu & Laurence William Gill & Francesco Pilla & Bidroha Basu, 2022. "Assessment of Climate Change Impact on the Annual Maximum Flood in an Urban River in Dublin, Ireland," Sustainability, MDPI, vol. 14(8), pages 1-23, April.
    6. Yong Cao & Cheng Wang & Yue Su & Houlang Duan & Xumei Wu & Rui Lu & Qiang Su & Yutong Wu & Zhaojun Chu, 2023. "Study on Spatiotemporal Evolution and Driving Forces of Habitat Quality in the Basin along the Yangtze River in Anhui Province Based on InVEST Model," Land, MDPI, vol. 12(5), pages 1-18, May.
    7. Liu Junsong & Ridwan Lanre Ibrahim & Abubakar Mohammed & Mamdouh Abdulaziz Saleh Al-Faryan, 2024. "Exploring the heterogeneous effects of technological innovations on environmental sustainability: Do structural change, environmental policy, and biofuel energy matter for G7 economies?," Energy & Environment, , vol. 35(4), pages 1818-1849, June.
    8. Yang, Zaoli & Ahmad, Salman & Bernardi, Andrea & Shang, Wen-long & Xuan, Jin & Xu, Bing, 2023. "Evaluating alternative low carbon fuel technologies using a stakeholder participation-based q-rung orthopair linguistic multi-criteria framework," Applied Energy, Elsevier, vol. 332(C).
    9. Druga, Michal & Minár, Jozef, 2023. "Cost distance and potential accessibility as alternative spatial approximators of human influence in LUCC modelling," Land Use Policy, Elsevier, vol. 132(C).
    10. Liting Xu & Sophia Shuang Chen & Yu Xu & Guangyu Li & Weizhong Su, 2019. "Impacts of Land-Use Change on Habitat Quality during 1985–2015 in the Taihu Lake Basin," Sustainability, MDPI, vol. 11(13), pages 1-21, June.
    11. Muhammet Cafer Ulker & Meral Buyukyildiz, 2023. "Evaluation of Runoff Simulation Using the Global BROOK90-R Model for Three Sub-Basins in Türkiye," Sustainability, MDPI, vol. 15(6), pages 1-19, March.
    12. Zhang, Xueru & Song, Wei & Lang, Yanqing & Feng, Xiaomiao & Yuan, Quanzhi & Wang, Jingtao, 2020. "Land use changes in the coastal zone of China’s Hebei Province and the corresponding impacts on habitat quality," Land Use Policy, Elsevier, vol. 99(C).
    13. Li, Junjie & Zhang, Yueling & Yang, Yanli & Zhang, Xiaomei & Wang, Nana & Zheng, Yonghong & Tian, Yajun & Xie, Kechang, 2022. "Life cycle assessment and techno-economic analysis of ethanol production via coal and its competitors: A comparative study," Applied Energy, Elsevier, vol. 312(C).
    14. Pengnan Xiao & Yong Zhou & Mengyao Li & Jie Xu, 2023. "Spatiotemporal patterns of habitat quality and its topographic gradient effects of Hubei Province based on the InVEST model," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 6419-6448, July.
    15. Rahimi, Mohammad & Mashhadimoslem, Hossein & Vo Thanh, Hung & Ranjbar, Benyamin & Safarzadeh Khosrowshahi, Mobin & Rohani, Abbas & Elkamel, Ali, 2023. "Yield prediction and optimization of biomass-based products by multi-machine learning schemes: Neural, regression and function-based techniques," Energy, Elsevier, vol. 283(C).
    16. Guannan Cui & Yanfeng Liu & Pengfei Wang & Xinyu Bai & Haitao Wang & Yiming Xu & Meiqiong Yang & Liming Dong, 2022. "Distribution Characteristics and Risk Assessment of Agricultural Land Use Non-Point Source Pollution in Typical Biofuel Ethanol Planting Areas," IJERPH, MDPI, vol. 19(3), pages 1-20, January.
    17. Feng Tang & Meichen Fu & Li Wang & Wanjuan Song & Jiangfeng Yu & Yanbin Wu, 2021. "Dynamic evolution and scenario simulation of habitat quality under the impact of land-use change in the Huaihe River Economic Belt, China," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-20, April.
    18. Guannan Cui & Xinyu Bai & Pengfei Wang & Haitao Wang & Shiyu Wang & Liming Dong, 2022. "Mechanism of Response of Watershed Water Quality to Agriculture Land-Use Changes in a Typical Fuel Ethanol Raw Material Planting Area—A Case Study on Guangxi Province, China," IJERPH, MDPI, vol. 19(11), pages 1-14, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:13:p:7995-:d:852607. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.