IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i13p7958-d851793.html
   My bibliography  Save this article

Performance Analysis of Overcurrent Protection in a Digital Substation with Process Bus

Author

Listed:
  • Oscar A. Tobar-Rosero

    (Departamento de Energía Eléctrica y Automática, Facultad de Minas, Universidad Nacional de Colombia, Sede Medellín, Medellín 050034, Colombia)

  • John E. Candelo-Becerra

    (Departamento de Energía Eléctrica y Automática, Facultad de Minas, Universidad Nacional de Colombia, Sede Medellín, Medellín 050034, Colombia)

  • Germán Zapata

    (Departamento de Energía Eléctrica y Automática, Facultad de Minas, Universidad Nacional de Colombia, Sede Medellín, Medellín 050034, Colombia)

Abstract

The digitization of electrical substations brings great challenges for the commissioning of electrical protections, and interoperability tests must be performed with different equipment. Therefore, this work evaluates the response time of an electrical protection relay operating with sampled values in a digital substation with a process bus. A test scheme is proposed to emulate the process bus based on analyzing the main components in a digital substation with multi-vendor device interoperability. In addition, the delay times of the protection relay with the process bus are measured, considering interoperable infrastructure as a fundamental factor in the system performance. The results are compared with the response times of a conventional relay that operates with analog signals to identify the impact of the digitalization of signals in electrical substations with a process bus. Each relay has an instantaneous overcurrent function adjusted to operate with the same pickup currents at different fault current levels. The results show that tripping times are admissible for the operation of the protection relays, considering three-time measuring points in the test scheme. The time delays found are related to high data traffic in the communication network and the traffic saturation according to the time measuring point. Other delays related to processing SVs in an MU do not represent a risk for the protection scheme. For the industry, the methods presented in the research are useful for configuring and testing electrical substations with different equipment and topologies. In addition, the results presented here seek to generate confidence in companies and engineering teams when migrating to systems with digital substations.

Suggested Citation

  • Oscar A. Tobar-Rosero & John E. Candelo-Becerra & Germán Zapata, 2022. "Performance Analysis of Overcurrent Protection in a Digital Substation with Process Bus," Sustainability, MDPI, vol. 14(13), pages 1-17, June.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:13:p:7958-:d:851793
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/13/7958/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/13/7958/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kinan Wannous & Petr Toman & Viktor Jurák & Vojtěch Wasserbauer, 2019. "Analysis of IEC 61850-9-2LE Measured Values Using a Neural Network," Energies, MDPI, vol. 12(9), pages 1-20, April.
    2. Linwei Chen & Haiyu Li & Thomas Charton & Ray Zhang, 2021. "Virtual Digital Substation Test System and Interoperability Assessments," Energies, MDPI, vol. 14(8), pages 1-15, April.
    3. Tanushree Bhattacharjee & Majid Jamil & Majed A. Alotaibi & Hasmat Malik & Mohammed E. Nassar, 2022. "Hardware Development and Interoperability Testing of a Multivendor-IEC-61850-Based Digital Substation," Energies, MDPI, vol. 15(5), pages 1-19, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Junho Hong & Tai-Jin Song & Hyojong Lee & Aydin Zaboli, 2022. "Automated Cybersecurity Tester for IEC61850-Based Digital Substations," Energies, MDPI, vol. 15(21), pages 1-17, October.
    2. Myeong-Hoon Song & Sang-Hee Kang & Nam-Ho Lee & Soon-Ryul Nam, 2020. "IEC 61850-Based Centralized Busbar Differential Protection with Data Desynchronization Compensation," Energies, MDPI, vol. 13(4), pages 1-15, February.
    3. Tanushree Bhattacharjee & Majid Jamil & Majed A. Alotaibi & Hasmat Malik & Mohammed E. Nassar, 2022. "Hardware Development and Interoperability Testing of a Multivendor-IEC-61850-Based Digital Substation," Energies, MDPI, vol. 15(5), pages 1-19, February.
    4. Ângelo Felipe Sartori & Adriano Peres de Morais & Ulisses Chemin Netto & Diomar Adonis Copetti Lima & Daniel Pinheiro Bernardon & Wagner Seizo Hokama, 2023. "Performance Analysis of Overcurrent Protection under Corrupted Sampled Value Frames: A Hardware-in-the-Loop Approach," Energies, MDPI, vol. 16(8), pages 1-14, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:13:p:7958-:d:851793. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.