IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i13p7913-d851208.html
   My bibliography  Save this article

Effect of Al 2 O 3 Nanoparticles on Performance and Emission Characteristics of Diesel Engine Fuelled with Diesel–Neem Biodiesel Blends

Author

Listed:
  • Yatendra Kaushik

    (Department of Mechanical Engineering, Bundelkhand Institute of Engineering and Technology, Jhansi 284128, India)

  • Vijay Verma

    (Department of Mechanical Engineering, Bundelkhand Institute of Engineering and Technology, Jhansi 284128, India)

  • Kuldeep Kumar Saxena

    (Department of Mechanical Engineering, GLA University, Mathura 281406, India)

  • Chander Prakash

    (School of Mechanical Engineering, Lovely Professional University, Phagwara 144411, India
    Division of Research and Development, Lovely Professional University, Phagwara 144411, India)

  • Lovi Raj Gupta

    (School of Mechanical Engineering, Lovely Professional University, Phagwara 144411, India)

  • Saurav Dixit

    (Peter the Great St. Petersburg Polytechnic University, 195251 Saint Petersburg, Russia
    Division of Research & Innovation, Uttaranchal University, Dehradun 248007, India)

Abstract

Indagation in the sphere of nanoparticle utilisation has provided commendatory upshots in discrete areas of application varying from medicinal use to environmental degradation alleviation. This study incorporates alumina nanoparticles as additives to diesel and biodiesel blends. The prime objective of the present study was the scrutinisation of the denouement of Al 2 O 3 nanoparticle incorporation in diesel–biodiesel blends on a diesel engine’s performance and emission characteristics. Test fuel samples were prepared by blending different proportions of biodiesel and dispersing two concentrations of alumina nanoparticles (25 and 50 ppm) in the diesel. Dispersion was made without the use of a nanoparticle stabiliser to meet real-world feasibility. High-speed shearing was employed to blend the biodiesel and diesel, while nanoparticles were dispersed in the blends by ultrasonication. The blends so devised were tested using a single-cylinder diesel engine at fixed RPM and applied load for three compression ratios. Upshots of brake-specific fuel consumption (BSFC) and brake thermal efficiency (BTE) for fuel samples were measured with LabView-based software, whereas CO emissions and unburnt hydrocarbon (UBHC) emissions were computed using an external gas analyser attached to the exhaust vent of the engine. Investigation revealed that the inclusion of Al 2 O 3 nanoparticles culminates in the amelioration of engine performance along with the alleviation of deleterious exhaust from engine. Furthermore, the incorporation of alumina nanoparticles assisted in the amelioration of dwindled performance attributed to biodiesel blending. More favourable results of nanoparticle inclusion were obtained at higher compression ratios compared to lower ones. Reckoning evinced that the Al 2 O 3 nanoparticle is a lucrative introduction for fuels to boost the performance and dwindle the deleterious exhaust of diesel engines.

Suggested Citation

  • Yatendra Kaushik & Vijay Verma & Kuldeep Kumar Saxena & Chander Prakash & Lovi Raj Gupta & Saurav Dixit, 2022. "Effect of Al 2 O 3 Nanoparticles on Performance and Emission Characteristics of Diesel Engine Fuelled with Diesel–Neem Biodiesel Blends," Sustainability, MDPI, vol. 14(13), pages 1-16, June.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:13:p:7913-:d:851208
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/13/7913/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/13/7913/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kumar Biswas, Pradip & Pohit, Sanjib & Kumar, Rajesh, 2010. "Biodiesel from jatropha: Can India meet the 20% blending target?," Energy Policy, Elsevier, vol. 38(3), pages 1477-1484, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Findlater, K.M. & Kandlikar, M., 2011. "Land use and second-generation biofuel feedstocks: The unconsidered impacts of Jatropha biodiesel in Rajasthan, India," Energy Policy, Elsevier, vol. 39(6), pages 3404-3413, June.
    2. Liu, Guilin & Mai, Jianfeng, 2022. "Habitat shifts of Jatropha curcas L. in the Asia-Pacific region under climate change scenarios," Energy, Elsevier, vol. 251(C).
    3. Pandey, Vimal Chandra & Singh, Kripal & Singh, Jay Shankar & Kumar, Akhilesh & Singh, Bajrang & Singh, Rana P., 2012. "Jatropha curcas: A potential biofuel plant for sustainable environmental development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2870-2883.
    4. Pandey, Krishan K. & Pragya, Namita & Sahoo, P.K., 2011. "Life cycle assessment of small-scale high-input Jatropha biodiesel production in India," Applied Energy, Elsevier, vol. 88(12), pages 4831-4839.
    5. Chang, Shiyan & Timilsina,Govinda R. & Xiliang,Zhang & Zhao, Lili, 2012. "Development of biofuels in China : technologies, economics and policies," Policy Research Working Paper Series 6243, The World Bank.
    6. Kumar, Sunil & Chaube, Alok & Jain, Shashi Kumar, 2012. "Sustainability issues for promotion of Jatropha biodiesel in Indian scenario: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1089-1098.
    7. Kumar Biswas, Pradip & Pohit, Sanjib, 2013. "What ails India's biodiesel programme?," Energy Policy, Elsevier, vol. 52(C), pages 789-796.
    8. Silitonga, A.S. & Masjuki, H.H. & Mahlia, T.M.I. & Ong, H.C. & Atabani, A.E. & Chong, W.T., 2013. "A global comparative review of biodiesel production from jatropha curcas using different homogeneous acid and alkaline catalysts: Study of physical and chemical properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 514-533.
    9. Basavaraj, G. & Parthasarathy Rao, P. & Basu, Kaushik & Reddy, Ch Ravinder & Kumar, A. Ashok & Srinivasa Rao, P. & Reddy, B.V.S., 2013. "Assessing viability of bio-ethanol production from sweet sorghum in India," Energy Policy, Elsevier, vol. 56(C), pages 501-508.
    10. Kumar, Dipesh & Singh, Bhaskar, 2019. "BaZrO3 and Cs-BaZrO3 catalysed transesterification of Millettia Pinnata oil and optimisation of reaction variables by response surface Box-Behnken design," Renewable Energy, Elsevier, vol. 133(C), pages 411-421.
    11. Liu, Xuan & Ye, Meng & Pu, Biao & Tang, Zhikang, 2012. "Risk management for jatropha curcas based biodiesel industry of Panzhihua Prefecture in Southwest China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1721-1734.
    12. Atadashi, I.M. & Aroua, M.K. & Abdul Aziz, A.R. & Sulaiman, N.M.N., 2012. "Production of biodiesel using high free fatty acid feedstocks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3275-3285.
    13. Edrisi, Sheikh Adil & Dubey, Rama Kant & Tripathi, Vishal & Bakshi, Mansi & Srivastava, Pankaj & Jamil, Sarah & Singh, H.B. & Singh, Nandita & Abhilash, P.C., 2015. "Jatropha curcas L.: A crucified plant waiting for resurgence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 855-862.
    14. Jiotode, Yeshudas & Agarwal, Avinash Kumar, 2017. "Endoscopic combustion characterization of Jatropha biodiesel in a compression ignition engine," Energy, Elsevier, vol. 119(C), pages 845-851.
    15. Kolasa, Marcin, 2014. "Real convergence and its illusions," Economic Modelling, Elsevier, vol. 37(C), pages 79-88.
    16. Ceasar, S.A. & Ignacimuthu, S., 2011. "Applications of biotechnology and biochemical engineering for the improvement of Jatropha and Biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 5176-5185.
    17. Singh, Bhaskar & Guldhe, Abhishek & Rawat, Ismail & Bux, Faizal, 2014. "Towards a sustainable approach for development of biodiesel from plant and microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 216-245.
    18. Chang, Shiyan & Zhao, Lili & Timilsina, Govinda R. & Zhang, Xiliang, 2012. "Biofuels development in China: Technology options and policies needed to meet the 2020 target," Energy Policy, Elsevier, vol. 51(C), pages 64-79.
    19. Motasemi, F. & Ani, F.N., 2012. "A review on microwave-assisted production of biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4719-4733.
    20. Kumar, Sunil & Chaube, Alok & Jain, Shashi Kumar, 2012. "Critical review of jatropha biodiesel promotion policies in India," Energy Policy, Elsevier, vol. 41(C), pages 775-781.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:13:p:7913-:d:851208. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.