IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i13p7818-d848838.html
   My bibliography  Save this article

Spillover Effect of the Interaction between Fintech and the Real Economy Based on Tail Risk Dependent Structure Analysis

Author

Listed:
  • Zhikai Peng

    (School of Economics and Management, Beijing Jiaotong University, Beijing 100044, China)

  • Jinchuan Ke

    (School of Economics and Management, Beijing Jiaotong University, Beijing 100044, China)

Abstract

Fintech innovation has greatly improved the operation efficiency of the financial industry and promoted the sustainable development of the real economy. On the other hand, fintech also brings the problem of risk spillover. Through a time series analysis, vector auto-regression with the Granger causality test is conducted to analyze the interaction between fintech and the real economy. To deal with the nonlinear relationship and overcome the high-dimensional-dependent structure faced by Copula, this paper establishes a GARCH–Vine–Copula model to study the tail risk and dynamic dependency between fintech and industries of the real economy in China, and then analyzes the risk spillover by calculating the CoVaR. The results show that there is a positive dynamic correlation between fintech and the real economy, and this increases when facing risk impact; fintech is located in the leading position of R-vine-dependent structure, and has a high correlation coefficient with the upper and lower tail of various industries. The results of CoVaR show that the extreme risk events in fintech and various industries have different degrees of negative impact on each other; the risk events in fintech have an extreme impact on industry in a short time.

Suggested Citation

  • Zhikai Peng & Jinchuan Ke, 2022. "Spillover Effect of the Interaction between Fintech and the Real Economy Based on Tail Risk Dependent Structure Analysis," Sustainability, MDPI, vol. 14(13), pages 1-22, June.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:13:p:7818-:d:848838
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/13/7818/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/13/7818/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jose Arreola Hernandez & Shawkat Hammoudeh & Duc Khuong Nguyen & Mazin A. M. Al Janabi & Juan Carlos Reboredo, 2017. "Global financial crisis and dependence risk analysis of sector portfolios: a vine copula approach," Applied Economics, Taylor & Francis Journals, vol. 49(25), pages 2409-2427, May.
    2. Joe, Harry & Li, Haijun & Nikoloulopoulos, Aristidis K., 2010. "Tail dependence functions and vine copulas," Journal of Multivariate Analysis, Elsevier, vol. 101(1), pages 252-270, January.
    3. Emmanouil N. Karimalis & Nikos K. Nomikos, 2018. "Measuring systemic risk in the European banking sector: a copula CoVaR approach," The European Journal of Finance, Taylor & Francis Journals, vol. 24(11), pages 944-975, July.
    4. Chen, Xiaohui & Teng, Lei & Chen, Wen, 2022. "How does FinTech affect the development of the digital economy? Evidence from China," The North American Journal of Economics and Finance, Elsevier, vol. 61(C).
    5. Ulf Schepsmeier, 2019. "A goodness-of-fit test for regular vine copula models," Econometric Reviews, Taylor & Francis Journals, vol. 38(1), pages 25-46, January.
    6. Fadhah Amer Alanazi, 2021. "A Mixture of Regular Vines for Multiple Dependencies," Journal of Probability and Statistics, Hindawi, vol. 2021, pages 1-15, May.
    7. Hao Ji & Hao Wang & Brunero Liseo, 2018. "Portfolio Diversification Strategy Via Tail‐Dependence Clustering and ARMA‐GARCH Vine Copula Approach," Australian Economic Papers, Wiley Blackwell, vol. 57(3), pages 265-283, September.
    8. Brechmann, Eike Christian & Schepsmeier, Ulf, 2013. "Modeling Dependence with C- and D-Vine Copulas: The R Package CDVine," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 52(i03).
    9. Kim, Daeyoung & Kim, Jong-Min & Liao, Shu-Min & Jung, Yoon-Sung, 2013. "Mixture of D-vine copulas for modeling dependence," Computational Statistics & Data Analysis, Elsevier, vol. 64(C), pages 1-19.
    10. Dißmann, J. & Brechmann, E.C. & Czado, C. & Kurowicka, D., 2013. "Selecting and estimating regular vine copulae and application to financial returns," Computational Statistics & Data Analysis, Elsevier, vol. 59(C), pages 52-69.
    11. Gennaioli, Nicola & Shleifer, Andrei & Vishny, Robert, 2012. "Neglected risks, financial innovation, and financial fragility," Journal of Financial Economics, Elsevier, vol. 104(3), pages 452-468.
    12. Yong Jae Shin & Yongrok Choi, 2019. "Feasibility of the Fintech Industry as an Innovation Platform for Sustainable Economic Growth in Korea," Sustainability, MDPI, vol. 11(19), pages 1-21, September.
    13. Nikoloulopoulos, Aristidis K. & Joe, Harry & Li, Haijun, 2012. "Vine copulas with asymmetric tail dependence and applications to financial return data," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3659-3673.
    14. Reboredo, Juan C. & Ugolini, Andrea, 2015. "Downside/upside price spillovers between precious metals: A vine copula approach," The North American Journal of Economics and Finance, Elsevier, vol. 34(C), pages 84-102.
    15. Lee, In & Shin, Yong Jae, 2018. "Fintech: Ecosystem, business models, investment decisions, and challenges," Business Horizons, Elsevier, vol. 61(1), pages 35-46.
    16. Tim Bedford & Alireza Daneshkhah & Kevin J. Wilson, 2016. "Approximate Uncertainty Modeling in Risk Analysis with Vine Copulas," Risk Analysis, John Wiley & Sons, vol. 36(4), pages 792-815, April.
    17. Heston, Steven L & Nandi, Saikat, 2000. "A Closed-Form GARCH Option Valuation Model," The Review of Financial Studies, Society for Financial Studies, vol. 13(3), pages 585-625.
    18. Rongda Chen & Huiwen Chen & Chenglu Jin & Bo Wei & Lean Yu, 2020. "Linkages and Spillovers between Internet Finance and Traditional Finance: Evidence from China," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 56(6), pages 1196-1210, May.
    19. Dalu Zhang & Meilan Yan & Andreas Tsopanakis, 2018. "Financial stress relationships among Euro area countries: an R-vine copula approach," The European Journal of Finance, Taylor & Francis Journals, vol. 24(17), pages 1587-1608, November.
    20. Zhu, Kailun & Kurowicka, Dorota & Nane, Gabriela F., 2020. "Common sampling orders of regular vines with application to model selection," Computational Statistics & Data Analysis, Elsevier, vol. 142(C).
    21. Andrew J. Patton, 2006. "Modelling Asymmetric Exchange Rate Dependence," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 47(2), pages 527-556, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qian Liu & Yiheng You, 2023. "FinTech and Green Credit Development—Evidence from China," Sustainability, MDPI, vol. 15(7), pages 1-23, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maziar Sahamkhadam & Andreas Stephan, 2019. "Portfolio optimization based on forecasting models using vine copulas: An empirical assessment for the financial crisis," Papers 1912.10328, arXiv.org.
    2. Koliai, Lyes, 2016. "Extreme risk modeling: An EVT–pair-copulas approach for financial stress tests," Journal of Banking & Finance, Elsevier, vol. 70(C), pages 1-22.
    3. Zhou, Wei & Chen, Yan & Chen, Jin, 2022. "Risk spread in multiple energy markets: Extreme volatility spillover network analysis before and during the COVID-19 pandemic," Energy, Elsevier, vol. 256(C).
    4. Krupskii, Pavel & Joe, Harry, 2013. "Factor copula models for multivariate data," Journal of Multivariate Analysis, Elsevier, vol. 120(C), pages 85-101.
    5. Hanif, Waqas & Arreola Hernandez, Jose & Sadorsky, Perry & Yoon, Seong-Min, 2020. "Are the interdependence characteristics of the US and Canadian energy equity sectors nonlinear and asymmetric?," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).
    6. Ojea-Ferreiro, Javier & Reboredo, Juan C., 2022. "Exchange rates and the global transmission of equity market shocks," Economic Modelling, Elsevier, vol. 114(C).
    7. Han, Xuyuan & Liu, Zhenya & Wang, Shixuan, 2022. "An R-vine copula analysis of non-ferrous metal futures with application in Value-at-Risk forecasting," Journal of Commodity Markets, Elsevier, vol. 25(C).
    8. Ojea Ferreiro, Javier, 2020. "Disentangling the role of the exchange rate in oil-related scenarios for the European stock market," Energy Economics, Elsevier, vol. 89(C).
    9. Aristidis K. Nikoloulopoulos, 2022. "An one‐factor copula mixed model for joint meta‐analysis of multiple diagnostic tests," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(3), pages 1398-1423, July.
    10. Brechmann, Eike & Czado, Claudia & Paterlini, Sandra, 2014. "Flexible dependence modeling of operational risk losses and its impact on total capital requirements," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 271-285.
    11. Reboredo, Juan C. & Ugolini, Andrea, 2018. "The impact of energy prices on clean energy stock prices. A multivariate quantile dependence approach," Energy Economics, Elsevier, vol. 76(C), pages 136-152.
    12. Weiß, Gregor N.F. & Scheffer, Marcus, 2015. "Mixture pair-copula-constructions," Journal of Banking & Finance, Elsevier, vol. 54(C), pages 175-191.
    13. Yuri Salazar & Wing Ng, 2015. "Nonparametric estimation of general multivariate tail dependence and applications to financial time series," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(1), pages 121-158, March.
    14. Shahzad, Syed Jawad Hussain & Arreola-Hernandez, Jose & Bekiros, Stelios & Shahbaz, Muhammad & Kayani, Ghulam Mujtaba, 2018. "A systemic risk analysis of Islamic equity markets using vine copula and delta CoVaR modeling," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 56(C), pages 104-127.
    15. Laih, Yih-Wenn, 2014. "Measuring rank correlation coefficients between financial time series: A GARCH-copula based sequence alignment algorithm," European Journal of Operational Research, Elsevier, vol. 232(2), pages 375-382.
    16. Dalla Valle, Luciana & De Giuli, Maria Elena & Tarantola, Claudia & Manelli, Claudio, 2016. "Default probability estimation via pair copula constructions," European Journal of Operational Research, Elsevier, vol. 249(1), pages 298-311.
    17. Simpson, Emma S. & Wadsworth, Jennifer L. & Tawn, Jonathan A., 2021. "A geometric investigation into the tail dependence of vine copulas," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    18. Siburg, Karl Friedrich & Stoimenov, Pavel & Weiß, Gregor N.F., 2015. "Forecasting portfolio-Value-at-Risk with nonparametric lower tail dependence estimates," Journal of Banking & Finance, Elsevier, vol. 54(C), pages 129-140.
    19. Tan, Sook-Rei & Li, Changtai & Yeap, Xiu Wei, 2022. "A time-varying copula approach for constructing a daily financial systemic stress index," The North American Journal of Economics and Finance, Elsevier, vol. 63(C).
    20. Krupskii, Pavel & Joe, Harry, 2015. "Structured factor copula models: Theory, inference and computation," Journal of Multivariate Analysis, Elsevier, vol. 138(C), pages 53-73.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:13:p:7818-:d:848838. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.