IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i13p7750-d847532.html
   My bibliography  Save this article

Influence of Intersection Density on Risk Perception of Drivers in Rural Roadways: A Driving Simulator Study

Author

Listed:
  • Samyajit Basu

    (Department of Engineering, Roma TRE University, Via Vito Volterra, 46, 00146 Roma, Italy)

  • Chiara Ferrante

    (Department of Engineering, Roma TRE University, Via Vito Volterra, 46, 00146 Roma, Italy)

  • Maria Rosaria De Blasiis

    (Department of Engineering, Roma TRE University, Via Vito Volterra, 46, 00146 Roma, Italy)

Abstract

With the aim of maintaining a decent level of accessibility, the presence of intersections, often in high numbers, is one of the typical features of rural roads. However, evidence from literature shows that increasing intersection density increases the risk of accidents. Accident analysis literature regarding intersection density primarily consists of accident prediction models which are a useful tool for measuring safety performance of roads, but the literature is lacking in terms of evaluation of driver behavior using direct measurements of driver performance. This study focuses on the influence of intersection density on the risk perception of drivers through experiments carried out with a driving simulator. A virtual driving environment of a rural roadway was constructed. The road consisted of segments featuring extra-urban and village driving environments with varying intersection density level. Participants were recruited to drive through this virtual driving environment. Various driver performance measures such as vehicle speed and brake and gas pedal usage were collected from the experiment and then processed for further analysis. Results indicate an increase in driver’s perceived risk when the intersection density increased, according with the findings from the accident prediction modeling literature. However, at the same time, this driving simulator study revealed some interesting insights about oscillating perceived risk among drivers in the case of mid-level intersection separation distances. Beyond the accident research domain, findings from this study can also be useful for engineers and transportation agencies associated with access management to make more informed decisions.

Suggested Citation

  • Samyajit Basu & Chiara Ferrante & Maria Rosaria De Blasiis, 2022. "Influence of Intersection Density on Risk Perception of Drivers in Rural Roadways: A Driving Simulator Study," Sustainability, MDPI, vol. 14(13), pages 1-15, June.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:13:p:7750-:d:847532
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/13/7750/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/13/7750/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alessandro Severino & Giuseppina Pappalardo & Salvatore Curto & Salvatore Trubia & Isaac Oyeyemi Olayode, 2021. "Safety Evaluation of Flower Roundabout Considering Autonomous Vehicles Operation," Sustainability, MDPI, vol. 13(18), pages 1-14, September.
    2. Elżbieta Macioszek, 2020. "Roundabout Entry Capacity Calculation—A Case Study Based on Roundabouts in Tokyo, Japan, and Tokyo Surroundings," Sustainability, MDPI, vol. 12(4), pages 1-21, February.
    3. Lord, Dominique & Mannering, Fred, 2010. "The statistical analysis of crash-frequency data: A review and assessment of methodological alternatives," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(5), pages 291-305, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maria Luisa Tumminello & Elżbieta Macioszek & Anna Granà, 2024. "Insights into Simulated Smart Mobility on Roundabouts: Achievements, Lessons Learned, and Steps Ahead," Sustainability, MDPI, vol. 16(10), pages 1-33, May.
    2. Gulsum Alicioglu & Bo Sun & Shen Shyang Ho, 2022. "An Injury-Severity-Prediction-Driven Accident Prevention System," Sustainability, MDPI, vol. 14(11), pages 1-15, May.
    3. Gila Albert & Dimitry Bukchin & Tomer Toledo, 2021. "Evaluation of a Public Technology-Based Traffic Enforcement Program," Sustainability, MDPI, vol. 13(21), pages 1-13, October.
    4. Min Li & Wuhong Wang & Zhen Liu & Mingjun Qiu & Dayi Qu, 2022. "Driver Behavior and Intention Recognition Based on Wavelet Denoising and Bayesian Theory," Sustainability, MDPI, vol. 14(11), pages 1-12, June.
    5. Najaf, Pooya & Thill, Jean-Claude & Zhang, Wenjia & Fields, Milton Greg, 2018. "City-level urban form and traffic safety: A structural equation modeling analysis of direct and indirect effects," Journal of Transport Geography, Elsevier, vol. 69(C), pages 257-270.
    6. Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.
    7. Khondoker Billah & Qasim Adegbite & Hatim O. Sharif & Samer Dessouky & Lauren Simcic, 2021. "Analysis of Intersection Traffic Safety in the City of San Antonio, 2013–2017," Sustainability, MDPI, vol. 13(9), pages 1-18, May.
    8. Bo Yang & Yao Wu & Weihua Zhang & Jie Bao, 2020. "Modeling Collision Probability on Freeway: Accounting for Different Types and Severities in Various LOS," Sustainability, MDPI, vol. 12(18), pages 1-13, September.
    9. Bae, Bumjoon & Seo, Changbeom, 2022. "Do public-private partnerships help improve road safety? Finding empirical evidence using panel data models," Transport Policy, Elsevier, vol. 126(C), pages 336-342.
    10. Svetlana BAČKALIĆ & Dragan JOVANOVIĆ & Todor BAČKALIĆ & Boško MATOVIĆ & Miloš PLJAKIĆ, 2019. "The Application Of Reliability Reallocation Model In Traffic Safety Analysis On Rural Roads," Transport Problems, Silesian University of Technology, Faculty of Transport, vol. 14(1), pages 115-125, April.
    11. Izdebski, Mariusz & Jacyna-Gołda, Ilona & Gołda, Paweł, 2022. "Minimisation of the probability of serious road accidents in the transport of dangerous goods," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    12. Dong, Chunjiao & Shao, Chunfu & Clarke, David B. & Nambisan, Shashi S., 2018. "An innovative approach for traffic crash estimation and prediction on accommodating unobserved heterogeneities," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 407-428.
    13. Renfei Wu & Xunjia Zheng & Yongneng Xu & Wei Wu & Guopeng Li & Qing Xu & Zhuming Nie, 2019. "Modified Driving Safety Field Based on Trajectory Prediction Model for Pedestrian–Vehicle Collision," Sustainability, MDPI, vol. 11(22), pages 1-15, November.
    14. Lv, Jinpeng & Lord, Dominique & Zhang, Yunlong & Chen, Zhi, 2015. "Investigating Peltzman effects in adopting mandatory seat belt laws in the US: Evidence from non-occupant fatalities," Transport Policy, Elsevier, vol. 44(C), pages 58-64.
    15. Ye, Wei & Xu, Yueru & Shi, Xiaomeng & Shiwakoti, Nirajan & Ye, Zhirui & Zheng, Yuan, 2024. "A macroscopic safety indicator for road segment: application of entropy theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 642(C).
    16. Dereli, Mehmet Ali & Erdogan, Saffet, 2017. "A new model for determining the traffic accident black spots using GIS-aided spatial statistical methods," Transportation Research Part A: Policy and Practice, Elsevier, vol. 103(C), pages 106-117.
    17. Zhuo Chen & Kang Tian, 2022. "Optimization of Evaluation Indicators for Driver’s Traffic Literacy: An Improved Principal Component Analysis Method," SAGE Open, , vol. 12(2), pages 21582440221, June.
    18. Ruru Xing & Zimu Li & Xiaoyu Cai & Zepeng Yang & Ningning Zhang & Tao Yang, 2023. "Accident Rate Prediction Model for Urban Expressway Underwater Tunnel," Sustainability, MDPI, vol. 15(13), pages 1-28, July.
    19. Wang, Hwachyi & De Backer, Hans & Lauwers, Dirk & Chang, S.K.Jason, 2019. "A spatio-temporal mapping to assess bicycle collision risks on high-risk areas (Bridges) - A case study from Taipei (Taiwan)," Journal of Transport Geography, Elsevier, vol. 75(C), pages 94-109.
    20. Ulak, Mehmet Baran & Ozguven, Eren Erman & Spainhour, Lisa & Vanli, Omer Arda, 2017. "Spatial investigation of aging-involved crashes: A GIS-based case study in Northwest Florida," Journal of Transport Geography, Elsevier, vol. 58(C), pages 71-91.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:13:p:7750-:d:847532. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.