IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i13p7740-d847139.html
   My bibliography  Save this article

A Landslide Susceptibility Evaluation of Highway Disasters Based on the Frequency Ratio Coupling Model

Author

Listed:
  • Huadan Fan

    (School of Civil and Architectural Engineering, Shandong University of Technology, Zibo 255049, China)

  • Yuefeng Lu

    (School of Civil and Architectural Engineering, Shandong University of Technology, Zibo 255049, China
    State Key Laboratory of Resources and Environmental Information System, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    Hunan Provincial Key Laboratory of Geo-Information Engineering in Surveying, Mapping and Remote Sensing, Hunan University of Science and Technology, Xiangtan 411201, China)

  • Yulong Hu

    (China Transport Telecommunications & Information Center, Beijing 100011, China)

  • Jun Fang

    (Hunan Provincial Key Laboratory of Geo-Information Engineering in Surveying, Mapping and Remote Sensing, Hunan University of Science and Technology, Xiangtan 411201, China)

  • Chengzhe Lv

    (School of Civil and Architectural Engineering, Shandong University of Technology, Zibo 255049, China)

  • Changqing Xu

    (School of Civil and Architectural Engineering, Shandong University of Technology, Zibo 255049, China)

  • Xinyi Feng

    (School of Civil and Architectural Engineering, Shandong University of Technology, Zibo 255049, China)

  • Yanru Liu

    (School of Civil and Architectural Engineering, Shandong University of Technology, Zibo 255049, China)

Abstract

A landslide disaster, especially a highway landslide, may greatly impact the transport capacity of nearby roads. Keeping highways open, in particular, is crucial for supporting the functioning of the economy, society and people. Therefore, evaluating the highway landslide susceptibility is particularly important. In this paper, the city of Laibin, in the Guangxi Zhuang Autonomous Region of China, was taken as the study zone. According to data on 641 highway landslide disaster points measured in the field and a basic evaluation of the study area, nine evaluation factors—the elevation, slope, aspect, height difference, plan curve, profile curve, precipitation, Topographic Wetness Index (TWI) and vegetation coverage—were selected. We coupled a Frequency Ratio (FR) model, Analytic Hierarchy Process (AHP), Logistic Regression (LR), Back Propagation Neural Network (BPNN) and Support Vector Machine (SVM) to evaluate the susceptibility to highway landslides, with a Receiver Operating Characteristic (ROC) curve used to analyze the precision of these models. The ROC curve showed that the accuracy of the five models was greater than 0.700 and thus had a certain reliability. Among them, the FR-LR model had the highest accuracy, at 0.804. The study protocol presented here can therefore provide a reference for evaluation studies on landslide susceptibility in other areas.

Suggested Citation

  • Huadan Fan & Yuefeng Lu & Yulong Hu & Jun Fang & Chengzhe Lv & Changqing Xu & Xinyi Feng & Yanru Liu, 2022. "A Landslide Susceptibility Evaluation of Highway Disasters Based on the Frequency Ratio Coupling Model," Sustainability, MDPI, vol. 14(13), pages 1-17, June.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:13:p:7740-:d:847139
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/13/7740/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/13/7740/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aihua Wei & Kaining Yu & Fenggang Dai & Fuji Gu & Wanxi Zhang & Yu Liu, 2022. "Application of Tree-Based Ensemble Models to Landslide Susceptibility Mapping: A Comparative Study," Sustainability, MDPI, vol. 14(10), pages 1-15, May.
    2. Rui-Xuan Tang & E-Chuan Yan & Tao Wen & Xiao-Meng Yin & Wei Tang, 2021. "Comparison of Logistic Regression, Information Value, and Comprehensive Evaluating Model for Landslide Susceptibility Mapping," Sustainability, MDPI, vol. 13(7), pages 1-25, March.
    3. Binh Thai Pham & Indra Prakash & Wei Chen & Hai-Bang Ly & Lanh Si Ho & Ebrahim Omidvar & Van Phong Tran & Dieu Tien Bui, 2019. "A Novel Intelligence Approach of a Sequential Minimal Optimization-Based Support Vector Machine for Landslide Susceptibility Mapping," Sustainability, MDPI, vol. 11(22), pages 1-30, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zefang Zhang & Zhikuan Qian & Yong Wei & Xing Zhu & Linjun Wang, 2022. "Evaluation of Geological Disaster Sensitivity in Shuicheng District Based on the WOE-RF Model," Sustainability, MDPI, vol. 14(23), pages 1-11, December.
    2. Weijian Yu & Hanxiao Guo & Ke Li & Bao Pan, 2023. "Experimental Study on Uniaxial Compression Mechanics and Failure Characteristics of Non-Through Fractured Rock," Sustainability, MDPI, vol. 15(6), pages 1-15, March.
    3. Jiakai Lu & Chao Ren & Weiting Yue & Ying Zhou & Xiaoqin Xue & Yuanyuan Liu & Cong Ding, 2023. "Investigation of Landslide Susceptibility Decision Mechanisms in Different Ensemble-Based Machine Learning Models with Various Types of Factor Data," Sustainability, MDPI, vol. 15(18), pages 1-49, September.
    4. Shuhang Li & Mohamed Abdelkareem & Nassir Al-Arifi, 2023. "Mapping Groundwater Prospective Areas Using Remote Sensing and GIS-Based Data Driven Frequency Ratio Techniques and Detecting Land Cover Changes in the Yellow River Basin, China," Land, MDPI, vol. 12(4), pages 1-20, March.
    5. Jing Li & Yuefeng Lu & Xiwen Li & Rui Wang & Ying Sun & Yanru Liu & Kaizhong Yao, 2023. "Evaluation and Analysis of Development Status of Yellow River Beach Area Based on Multi-Source Data and Coordination Degree Model," Sustainability, MDPI, vol. 15(7), pages 1-25, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yanrong Liu & Zhongqiu Meng & Lei Zhu & Di Hu & Handong He, 2023. "Optimizing the Sample Selection of Machine Learning Models for Landslide Susceptibility Prediction Using Information Value Models in the Dabie Mountain Area of Anhui, China," Sustainability, MDPI, vol. 15(3), pages 1-23, January.
    2. Hui Shang & Sihang Liu & Jiaxin Zhong & Paraskevas Tsangaratos & Ioanna Ilia & Wei Chen & Yunzhi Chen & Yang Liu, 2024. "Application of Naive Bayes, kernel logistic regression and alternation decision tree for landslide susceptibility mapping in Pengyang County, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(13), pages 12043-12079, October.
    3. Yigen Qin & Genlan Yang & Kunpeng Lu & Qianzheng Sun & Jin Xie & Yunwu Wu, 2021. "Performance Evaluation of Five GIS-Based Models for Landslide Susceptibility Prediction and Mapping: A Case Study of Kaiyang County, China," Sustainability, MDPI, vol. 13(11), pages 1-20, June.
    4. Bo Cao & Qingyi Li & Yuhang Zhu, 2022. "Comparison of Effects between Different Weight Calculation Methods for Improving Regional Landslide Susceptibility—A Case Study from Xingshan County of China," Sustainability, MDPI, vol. 14(17), pages 1-15, September.
    5. Esteban Bravo-López & Tomás Fernández Del Castillo & Chester Sellers & Jorge Delgado-García, 2023. "Analysis of Conditioning Factors in Cuenca, Ecuador, for Landslide Susceptibility Maps Generation Employing Machine Learning Methods," Land, MDPI, vol. 12(6), pages 1-28, May.
    6. Hyung-Sup Jung & Saro Lee & Biswajeet Pradhan, 2020. "Sustainable Applications of Remote Sensing and Geospatial Information Systems to Earth Observations," Sustainability, MDPI, vol. 12(6), pages 1-6, March.
    7. Phong Tung Nguyen & Duong Hai Ha & Abolfazl Jaafari & Huu Duy Nguyen & Tran Van Phong & Nadhir Al-Ansari & Indra Prakash & Hiep Van Le & Binh Thai Pham, 2020. "Groundwater Potential Mapping Combining Artificial Neural Network and Real AdaBoost Ensemble Technique: The DakNong Province Case-study, Vietnam," IJERPH, MDPI, vol. 17(7), pages 1-20, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:13:p:7740-:d:847139. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.