IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i12p7409-d840938.html
   My bibliography  Save this article

Parametric Approach to Simplified Life Cycle Assessment of Social Housing Projects

Author

Listed:
  • Eleni Eleftheriou

    (Chair for Sustainable Construction, Swiss Federal Institute of Technology ETHZ, 8092 Zürich, Switzerland)

  • Luis Felipe Lopez Muñoz

    (BASE-Bahay Innovation Centre, Makati 1231, Philippines)

  • Guillaume Habert

    (Chair for Sustainable Construction, Swiss Federal Institute of Technology ETHZ, 8092 Zürich, Switzerland)

  • Edwin Zea Escamilla

    (Chair for Sustainable Construction, Swiss Federal Institute of Technology ETHZ, 8092 Zürich, Switzerland)

Abstract

The provision of sustainable housing solutions is one of the main challenges in emerging economy countries. Furthermore, it is clear that a sustainable solution should be based on renewable bio-based materials. Scientific and practical evidence clearly suggests that the use of bamboo in the provision of housing solutions provides communities with both environmental and socio-economic benefits via this strategy. One barrier to the promotion of this type of solution is the lack of knowledge on structural design and environmental performance. Moreover, access to assessment tools and methodologies is limited. The use of simplified Life Cycle Assessment (LCA) has exhibited great potential to increase accessibility, but the generation of life cycle inventory data remains a major issue. In this paper, we describe the development of a methodological approach to use parametric design to generate the data required to carry out simplified LCA of social housing solutions. Moreover, we present a case study assessing a housing unit using cement bamboo frame technology developed by the Base Bahay Foundation in the Philippines. The main parameters for the LCA of the buildings were identified through sensitivity analysis. Moreover, they show that parametric design is a valid approach to overcome the challenges of data generation at early stages of design. The proposed approach would enable users without civil and/or engineering background to carry out simplified LCA calculations. Thus, through methodological approaches, it is possible to reduce significantly the complexity associated with LCA and open new avenues for it application.

Suggested Citation

  • Eleni Eleftheriou & Luis Felipe Lopez Muñoz & Guillaume Habert & Edwin Zea Escamilla, 2022. "Parametric Approach to Simplified Life Cycle Assessment of Social Housing Projects," Sustainability, MDPI, vol. 14(12), pages 1-15, June.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:12:p:7409-:d:840938
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/12/7409/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/12/7409/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Edwin Zea Escamilla & Guillaume Habert & Juan Francisco Correal Daza & Hector F. Archilla & Juan Sebastian Echeverry Fernández & David Trujillo, 2018. "Industrial or Traditional Bamboo Construction? Comparative Life Cycle Assessment (LCA) of Bamboo-Based Buildings," Sustainability, MDPI, vol. 10(9), pages 1-14, August.
    2. Corinna Salzer & Holger Wallbaum & Luis Felipe Lopez & Jean Luc Kouyoumji, 2016. "Sustainability of Social Housing in Asia: A Holistic Multi-Perspective Development Process for Bamboo-Based Construction in the Philippines," Sustainability, MDPI, vol. 8(2), pages 1-26, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liyin Shen & Junsi Yang & Rong Zhang & Changzhuan Shao & Xiangnan Song, 2019. "The Benefits and Barriers for Promoting Bamboo as a Green Building Material in China—An Integrative Analysis," Sustainability, MDPI, vol. 11(9), pages 1-23, April.
    2. Brian E. Bautista & Lessandro E. O. Garciano & Luis F. Lopez, 2021. "Comparative Analysis of Shear Strength Parallel to Fiber of Different Local Bamboo Species in the Philippines," Sustainability, MDPI, vol. 13(15), pages 1-21, July.
    3. Zhuyuan Xue & Hongbo Liu & Qinxiao Zhang & Jingxin Wang & Jilin Fan & Xia Zhou, 2019. "The Impact Assessment of Campus Buildings Based on a Life Cycle Assessment–Life Cycle Cost Integrated Model," Sustainability, MDPI, vol. 12(1), pages 1-24, December.
    4. Iker Etxano & Itziar Barinaga-Rementeria & Oihana Garcia, 2018. "Conflicting Values in Rural Planning: A Multifunctionality Approach through Social Multi-Criteria Evaluation," Sustainability, MDPI, vol. 10(5), pages 1-29, May.
    5. Edwin Zea Escamilla & Guillaume Habert & Juan Francisco Correal Daza & Hector F. Archilla & Juan Sebastian Echeverry Fernández & David Trujillo, 2018. "Industrial or Traditional Bamboo Construction? Comparative Life Cycle Assessment (LCA) of Bamboo-Based Buildings," Sustainability, MDPI, vol. 10(9), pages 1-14, August.
    6. Brian E. Bautista & Jason Maximino C. Ongpeng & Luis F. Razon, 2022. "LCA of Mortar with Calcined Clay and Limestone Filler in RC Column Retrofit," Sustainability, MDPI, vol. 14(3), pages 1-26, January.
    7. Faham Tahmasebinia & Yuanchen Ma & Karl Joshua & Saleh Mohammad Ebrahimzadeh Sepasgozar & Yang Yu & Jike Li & Samad Sepasgozar & Fernando Alonso Marroquin, 2021. "Sustainable Architecture Creating Arches Using a Bamboo Grid Shell Structure: Numerical Analysis and Design," Sustainability, MDPI, vol. 13(5), pages 1-25, March.
    8. Xingwei Xiang & Qian Wu & Ye Zhang & Bifeng Zhu & Xiaoji Wang & Anping Wan & Tongle Huang & Luoke Hu, 2021. "A Pedagogical Approach to Incorporating the Concept of Sustainability into Design-to-Physical-Construction Teaching in Introductory Architectural Design Courses: A Case Study on a Bamboo Construction ," Sustainability, MDPI, vol. 13(14), pages 1-29, July.
    9. Yao Lu & Hankun Lin & Siwei Liu & Yiqiang Xiao, 2019. "Nonuniform Woven Solar Shading Screens: Shading, Mechanical, and Daylighting Performance," Sustainability, MDPI, vol. 11(20), pages 1-19, October.
    10. Rui Ma & Zhihua Chen & Yansheng Du & Lingao Jiao, 2023. "Structural Grading and Characteristic Value of the Moso Bamboo Culm Based on Its Minimum External Diameter," Sustainability, MDPI, vol. 15(15), pages 1-22, July.
    11. Dimitra Ioannidou & Guido Sonnemann & Sangwon Suh, 2020. "Do we have enough natural sand for low‐carbon infrastructure?," Journal of Industrial Ecology, Yale University, vol. 24(5), pages 1004-1015, October.
    12. Mahmoud Sodangi & Zaheer Abbas Kazmi, 2020. "Integrated Evaluation of the Impediments to the Adoption of Coconut Palm Wood as a Sustainable Material for Building Construction," Sustainability, MDPI, vol. 12(18), pages 1-24, September.
    13. Chun Hua Julia Liu & Francesco Pomponi & Bernardino D’Amico, 2023. "The Extent to Which Hemp Insulation Materials Can Be Used in Canadian Residential Buildings," Sustainability, MDPI, vol. 15(19), pages 1-31, October.
    14. Bianca Galmarini & Paolo Costa & Leonardo Chiesi, 2022. "Natural Building Materials and Social Representations in Informal Settlements: How Perceptions of Bamboo Interfere with Sustainable, Affordable, and Quality Housing," Sustainability, MDPI, vol. 14(19), pages 1-26, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:12:p:7409-:d:840938. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.