IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i15p8164-d598710.html
   My bibliography  Save this article

Comparative Analysis of Shear Strength Parallel to Fiber of Different Local Bamboo Species in the Philippines

Author

Listed:
  • Brian E. Bautista

    (Department of Civil Engineering, De La Salle University, Manila 0922, Philippines)

  • Lessandro E. O. Garciano

    (Department of Civil Engineering, De La Salle University, Manila 0922, Philippines)

  • Luis F. Lopez

    (Base Bahay Foundation Inc., Makati 1231, Philippines)

Abstract

There are limited published studies related to the mechanical properties of bamboo species in the Philippines. In this study, the shear strength properties of some economically viable bamboo species in the Philippines were properly characterized based on 220 shear test results. The rationales of selecting this mechanical property are the following: (1) Shear strength, parallel to the fiber, has the highest variability among the mechanical properties; and (2) Shear is one of the governing forces on joint connections, and such connections are the points of failure on bamboo structures when subjected to extreme loading conditions. ISO 22157-1 (2017) test protocol for shear was used for all tests. The results showed that Bambusa blumeana has the highest average shear strength, followed by Gigantochloa apus , Dendrocalamus asper , Bambusa philippinensis , and Bambusa vulgaris . However, comparative analysis, using One-way ANOVA, showed that shear strength values among these bamboo species have significant differences statistically. A linear regression model is also established to estimate the shear strength of bamboo from the physical properties. Characteristic shear strength is also determined using ISO 12122-1 (2014) for future design reference.

Suggested Citation

  • Brian E. Bautista & Lessandro E. O. Garciano & Luis F. Lopez, 2021. "Comparative Analysis of Shear Strength Parallel to Fiber of Different Local Bamboo Species in the Philippines," Sustainability, MDPI, vol. 13(15), pages 1-21, July.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:15:p:8164-:d:598710
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/15/8164/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/15/8164/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Edwin Zea Escamilla & Guillaume Habert & Juan Francisco Correal Daza & Hector F. Archilla & Juan Sebastian Echeverry Fernández & David Trujillo, 2018. "Industrial or Traditional Bamboo Construction? Comparative Life Cycle Assessment (LCA) of Bamboo-Based Buildings," Sustainability, MDPI, vol. 10(9), pages 1-14, August.
    2. Corinna Salzer & Holger Wallbaum & Luis Felipe Lopez & Jean Luc Kouyoumji, 2016. "Sustainability of Social Housing in Asia: A Holistic Multi-Perspective Development Process for Bamboo-Based Construction in the Philippines," Sustainability, MDPI, vol. 8(2), pages 1-26, February.
    3. Chen, Meiling & Weng, Yun & Semple, Kate & Zhang, Shuxian & Hu, Yu'an & Jiang, Xiayun & Ma, Jianxin & Fei, Benhua & Dai, Chunping, 2021. "Sustainability and innovation of bamboo winding composite pipe products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Brian E. Bautista & Jason Maximino C. Ongpeng & Luis F. Razon, 2022. "LCA of Mortar with Calcined Clay and Limestone Filler in RC Column Retrofit," Sustainability, MDPI, vol. 14(3), pages 1-26, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liyin Shen & Junsi Yang & Rong Zhang & Changzhuan Shao & Xiangnan Song, 2019. "The Benefits and Barriers for Promoting Bamboo as a Green Building Material in China—An Integrative Analysis," Sustainability, MDPI, vol. 11(9), pages 1-23, April.
    2. Eleni Eleftheriou & Luis Felipe Lopez Muñoz & Guillaume Habert & Edwin Zea Escamilla, 2022. "Parametric Approach to Simplified Life Cycle Assessment of Social Housing Projects," Sustainability, MDPI, vol. 14(12), pages 1-15, June.
    3. Khan, Abir & Sapuan, S.M. & Yusuf, J. & Siddiqui, Vasi Uddin & Zainudin, E.S. & Zuhri, M.Y.M. & Tuah Baharuddin, B.T. Hang & Ansari, Mubashshir Ahmad & Rahman, A. Azim A., 2023. "An examination of cutting-edge developments in Bamboo-PLA composite research: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    4. Zhuyuan Xue & Hongbo Liu & Qinxiao Zhang & Jingxin Wang & Jilin Fan & Xia Zhou, 2019. "The Impact Assessment of Campus Buildings Based on a Life Cycle Assessment–Life Cycle Cost Integrated Model," Sustainability, MDPI, vol. 12(1), pages 1-24, December.
    5. Iker Etxano & Itziar Barinaga-Rementeria & Oihana Garcia, 2018. "Conflicting Values in Rural Planning: A Multifunctionality Approach through Social Multi-Criteria Evaluation," Sustainability, MDPI, vol. 10(5), pages 1-29, May.
    6. Edwin Zea Escamilla & Guillaume Habert & Juan Francisco Correal Daza & Hector F. Archilla & Juan Sebastian Echeverry Fernández & David Trujillo, 2018. "Industrial or Traditional Bamboo Construction? Comparative Life Cycle Assessment (LCA) of Bamboo-Based Buildings," Sustainability, MDPI, vol. 10(9), pages 1-14, August.
    7. Brian E. Bautista & Jason Maximino C. Ongpeng & Luis F. Razon, 2022. "LCA of Mortar with Calcined Clay and Limestone Filler in RC Column Retrofit," Sustainability, MDPI, vol. 14(3), pages 1-26, January.
    8. Faham Tahmasebinia & Yuanchen Ma & Karl Joshua & Saleh Mohammad Ebrahimzadeh Sepasgozar & Yang Yu & Jike Li & Samad Sepasgozar & Fernando Alonso Marroquin, 2021. "Sustainable Architecture Creating Arches Using a Bamboo Grid Shell Structure: Numerical Analysis and Design," Sustainability, MDPI, vol. 13(5), pages 1-25, March.
    9. Xingwei Xiang & Qian Wu & Ye Zhang & Bifeng Zhu & Xiaoji Wang & Anping Wan & Tongle Huang & Luoke Hu, 2021. "A Pedagogical Approach to Incorporating the Concept of Sustainability into Design-to-Physical-Construction Teaching in Introductory Architectural Design Courses: A Case Study on a Bamboo Construction ," Sustainability, MDPI, vol. 13(14), pages 1-29, July.
    10. Yao Lu & Hankun Lin & Siwei Liu & Yiqiang Xiao, 2019. "Nonuniform Woven Solar Shading Screens: Shading, Mechanical, and Daylighting Performance," Sustainability, MDPI, vol. 11(20), pages 1-19, October.
    11. Rui Ma & Zhihua Chen & Yansheng Du & Lingao Jiao, 2023. "Structural Grading and Characteristic Value of the Moso Bamboo Culm Based on Its Minimum External Diameter," Sustainability, MDPI, vol. 15(15), pages 1-22, July.
    12. Dimitra Ioannidou & Guido Sonnemann & Sangwon Suh, 2020. "Do we have enough natural sand for low‐carbon infrastructure?," Journal of Industrial Ecology, Yale University, vol. 24(5), pages 1004-1015, October.
    13. Mahmoud Sodangi & Zaheer Abbas Kazmi, 2020. "Integrated Evaluation of the Impediments to the Adoption of Coconut Palm Wood as a Sustainable Material for Building Construction," Sustainability, MDPI, vol. 12(18), pages 1-24, September.
    14. Chun Hua Julia Liu & Francesco Pomponi & Bernardino D’Amico, 2023. "The Extent to Which Hemp Insulation Materials Can Be Used in Canadian Residential Buildings," Sustainability, MDPI, vol. 15(19), pages 1-31, October.
    15. Bianca Galmarini & Paolo Costa & Leonardo Chiesi, 2022. "Natural Building Materials and Social Representations in Informal Settlements: How Perceptions of Bamboo Interfere with Sustainable, Affordable, and Quality Housing," Sustainability, MDPI, vol. 14(19), pages 1-26, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:15:p:8164-:d:598710. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.