IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i12p7183-d836927.html
   My bibliography  Save this article

Nitrogen Reduction Combined with Organic Materials Can Stabilize Crop Yield and Soil Nutrients in Winter Rapeseed and Maize Rotation in Yellow Soil

Author

Listed:
  • Quan-Quan Wei

    (Institute of Soil and Fertilizer, Guizhou Academy of Agricultural Sciences/Guizhou Observation Experimental Station of Farmland Preservation and Agricultural Environmental Sciences, Ministry of Agriculture, Guiyang 550006, China
    Institute of Oil Crops, Guizhou Academy of Agricultural Science, Guiyang 550006, China)

  • Jiu-Lan Gou

    (Institute of Soil and Fertilizer, Guizhou Academy of Agricultural Sciences/Guizhou Observation Experimental Station of Farmland Preservation and Agricultural Environmental Sciences, Ministry of Agriculture, Guiyang 550006, China)

  • Meng Zhang

    (Institute of Soil and Fertilizer, Guizhou Academy of Agricultural Sciences/Guizhou Observation Experimental Station of Farmland Preservation and Agricultural Environmental Sciences, Ministry of Agriculture, Guiyang 550006, China)

  • Bang-Xi Zhang

    (Institute of Soil and Fertilizer, Guizhou Academy of Agricultural Sciences/Guizhou Observation Experimental Station of Farmland Preservation and Agricultural Environmental Sciences, Ministry of Agriculture, Guiyang 550006, China)

  • Yong Rao

    (Institute of Oil Crops, Guizhou Academy of Agricultural Science, Guiyang 550006, China)

  • Hua-Gui Xiao

    (Institute of Soil and Fertilizer, Guizhou Academy of Agricultural Sciences/Guizhou Observation Experimental Station of Farmland Preservation and Agricultural Environmental Sciences, Ministry of Agriculture, Guiyang 550006, China
    Institute of Oil Crops, Guizhou Academy of Agricultural Science, Guiyang 550006, China)

Abstract

Objective: To investigate the effect of nitrogen reduction combined with organic materials on crop growth of winter rapeseed and maize rotation in yellow soil. Methods: A 2-year, four-season winter rapeseed and maize rotation experiment using three organic materials (biochar (B), commercial organic fertilizer (O) and straw (S), 3000 kg·hm −2 ) and three nitrogen application rates (100%, 85% and 70%) was carried out from 2018 to 2020 in Guizhou Province, China. By comprehensively analyzing the crop yield, biomass and nutrient absorption, soil nutrients indicators, and the efficiency of nitrogen fertilizer was calculated. Results: All organic materials could increase the yield of both crops, and 100% N + O treatment was the best, and the 2-year winter rapeseed and maize yields reached 3069 kg·hm −2 , 3215 kg·hm −2 and 11,802 kg·hm −2 , 11,912 kg·hm −2 , respectively. When nitrogen application was reduced by 15%, the addition of the three organic materials could stabilize or increase the yield and biomass, and nitrogen, phosphorus and potassium absorption in both crops showed an increasing trend, which could improve or maintain soil nutrients. When nitrogen application was reduced by 30%, the yields of two crops with organic materials addition were lower than those of 100% N treatment. Through the interaction, it was found that nitrogen and organic material were the main reasons for the increase in yield, respectively. Conclusions: The addition of three organic materials can replace 15% of nitrogen fertilizer. It is recommended to apply 153.0 kg·hm −2 and 127.5 kg·hm −2 of nitrogen fertilizer in winter rapeseed and maize seasons, respectively, in the rotation area of Guizhou yellow soil, with the addition of 3000 kg·hm −2 organic materials, most appropriately commercial organic fertilizer.

Suggested Citation

  • Quan-Quan Wei & Jiu-Lan Gou & Meng Zhang & Bang-Xi Zhang & Yong Rao & Hua-Gui Xiao, 2022. "Nitrogen Reduction Combined with Organic Materials Can Stabilize Crop Yield and Soil Nutrients in Winter Rapeseed and Maize Rotation in Yellow Soil," Sustainability, MDPI, vol. 14(12), pages 1-15, June.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:12:p:7183-:d:836927
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/12/7183/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/12/7183/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Xiaolin & Ren, Yuanyuan & Zhang, Suiqi & Chen, Yinglong & Wang, Nan, 2017. "Applications of organic manure increased maize (Zea mays L.) yield and water productivity in a semi-arid region," Agricultural Water Management, Elsevier, vol. 187(C), pages 88-98.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jovanovic, N. & Pereira, L.S. & Paredes, P. & Pôças, I. & Cantore, V. & Todorovic, M., 2020. "A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods," Agricultural Water Management, Elsevier, vol. 239(C).
    2. Surendra K Pradhan & Olufunke Cofie & Josiane Nikiema & Helvi Heinonen-Tanski, 2019. "Fecal Sludge Derived Products as Fertilizer for Lettuce Cultivation in Urban Agriculture," Sustainability, MDPI, vol. 11(24), pages 1-15, December.
    3. Pradhan, Surendra K. & Cofie, Olufunke & Nikiema, Josiane & Heinonen-Tanski, H., 2019. "Fecal sludge derived products as fertilizer for lettuce cultivation in urban agriculture," Papers published in Journals (Open Access), International Water Management Institute, pages 1-11(24):71.
    4. Su, Han & Sun, Hongyong & Dong, Xinliang & Chen, Pei & Zhang, Xuejia & Tian, Liu & Liu, Xiaojing & Wang, Jintao, 2021. "Did manure improve saline water irrigation threshold of winter wheat? A 3-year field investigation," Agricultural Water Management, Elsevier, vol. 258(C).
    5. Amin, M.G. Mostofa & Mahbub, S.M. Mubtasim & Hasan, Md. Moudud & Pervin, Wafa & Sharmin, Jinat & Hossain, Md. Delwar, 2023. "Plant–water relations in subtropical maize fields under mulching and organic fertilization," Agricultural Water Management, Elsevier, vol. 286(C).
    6. Duan, Chenxiao & Li, Jiabei & Zhang, Binbin & Wu, Shufang & Fan, Junliang & Feng, Hao & He, Jianqiang & Siddique, Kadambot H.M., 2023. "Effect of bio-organic fertilizer derived from agricultural waste resources on soil properties and winter wheat (Triticum aestivum L.) yield in semi-humid drought-prone regions," Agricultural Water Management, Elsevier, vol. 289(C).
    7. Wang, Ning & Zhang, Tonghui & Cong, Anqi & Lian, Jie, 2023. "Integrated application of fertilization and reduced irrigation improved maize (Zea mays L.) yield, crop water productivity and nitrogen use efficiency in a semi-arid region," Agricultural Water Management, Elsevier, vol. 289(C).
    8. Zhen LIU & Kai SUN & Bin ZHENG & Qingling DONG & Geng LI & Huifang HAN & Zengjia LI & Tangyuan NING, 2019. "Impacts of straw, biogas slurry, manure and mineral fertilizer applications on several biochemical properties and crop yield in a wheat-maize cropping system," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 65(1), pages 1-8.
    9. Dharmappa Hagare & Woo Taek Hong & Zuhaib Siddiqui & Sai Kiran Natarajan & Julian Fyfe, 2022. "Effect of Dairy Pond Sludge/Supernatant Application on Ryegrass Dry Matter Yield and Phosphorus Fractions in Soil," Agriculture, MDPI, vol. 12(3), pages 1-12, February.
    10. Zhang, Fangfang & Wei, Ya'nan & Bo, Qifei & Tang, An & Song, Qilong & Li, Shiqing & Yue, Shanchao, 2022. "Long-term film mulching with manure amendment increases crop yield and water productivity but decreases the soil carbon and nitrogen sequestration potential in semiarid farmland," Agricultural Water Management, Elsevier, vol. 273(C).
    11. Duan, Chenxiao & Chen, Jifei & Li, Jiabei & Su, Shunshun & Lei, Qi & Feng, Hao & Wu, Shufang & Zhang, Tibin & Siddique, Kadambot H.M. & Zou, Yufeng, 2022. "Biomaterial amendments combined with ridge–furrow mulching improve soil hydrothermal characteristics and wolfberry (Lycium barbarum L.) growth in the Qaidam Basin of China," Agricultural Water Management, Elsevier, vol. 259(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:12:p:7183-:d:836927. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.