IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i10p5860-d813979.html
   My bibliography  Save this article

Dynamics of Soil Carbon Fractions and Carbon Stability in Relation to Grassland Degradation in Xinjiang, Northwest China

Author

Listed:
  • Qiao Xu

    (College of Grassland Science, Xinjiang Agricultural University, Urumqi 830052, China)

  • Yan Wei

    (College of Grassland Science, Xinjiang Agricultural University, Urumqi 830052, China)

  • Xinfeng Zhao

    (Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China)

  • Hailiang Xu

    (Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China)

Abstract

Grassland degradation usually results in significant shifts in vegetation species composition and plant biomass, thus altering the soil organic carbon (SOC) content and stability. Dynamics of labile carbon fractions after grassland degradation were well addressed; however, the changes in stable carbon fractions were poorly quantified. Soil samples at 0–10 cm and 10–20 cm depth were collected from a native grassland (NA), a lightly degraded grassland (LD), a moderately degraded grassland (MD), and a severely degraded grassland (SD) in northwest China to assess the influence of grassland degradation on the total SOC content, four SOC fractions (very labile carbon, CF1; labile carbon, CF2; less labile carbon, CF3; non-labile carbon, CF4), and SOC stability. Compared with the NA, the contents under LD, MD, and SD at 0–20 cm depth reduced by 20.58%, 29.22%, and 64.58% for total SOC, 21.38%, 23.00%, and 63.66% for CF1, 13.81%, 20.58%, and 62.26% for CF2, 24.30%, 35.05%, and 68.63% for CF3, and 22.17%, 38.80%, and 63.82% for CF4, respectively. The linear relationships between the total SOC and the four fractions of CF1, CF2, CF3, and CF4 were significant in this study. The lability index of SOC under the NA, LD, MD, and SD was 1.57, 1.59, 1.67, and 1.57, respectively, and no significant difference was found among the four grasslands. To conclude, grassland degradation changes the contents of total SOC and its labile and stable fractions but did not change the SOC stability in northwest China.

Suggested Citation

  • Qiao Xu & Yan Wei & Xinfeng Zhao & Hailiang Xu, 2022. "Dynamics of Soil Carbon Fractions and Carbon Stability in Relation to Grassland Degradation in Xinjiang, Northwest China," Sustainability, MDPI, vol. 14(10), pages 1-11, May.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:10:p:5860-:d:813979
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/10/5860/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/10/5860/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yi Yang & David Tilman & George Furey & Clarence Lehman, 2019. "Soil carbon sequestration accelerated by restoration of grassland biodiversity," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    2. Xiaoni You & Xiangying Li & Mika Sillanpää & Rong Wang & Chengyong Wu & Qiangqiang Xu, 2022. "Export of Dissolved Organic Carbon from the Source Region of Yangtze River in the Tibetan Plateau," Sustainability, MDPI, vol. 14(4), pages 1-17, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tong-Hui Wu & Yu-Fu Hu & Yan-Yan Zhang & Xiang-Yang Shu & Ze-Peng Yang & Wei Zhou & Cheng-Yi Huang & Jie Li & Zhi Li & Jia He & Ying Yu, 2022. "Changes in soil organic carbon and its fractions under grassland reclamation in alpine-cold soils, China," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 17(4), pages 211-221.
    2. Sarah R. Weiskopf & Forest Isbell & Maria Isabel Arce-Plata & Moreno Di Marco & Mike Harfoot & Justin Johnson & Susannah B. Lerman & Brian W. Miller & Toni Lyn Morelli & Akira S. Mori & Ensheng Weng &, 2024. "Biodiversity loss reduces global terrestrial carbon storage," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Hongying Zhang & Zongjun Gao & Mengjie Shi & Shaoyan Fang, 2020. "Soil Bacterial Diversity and Its Relationship with Soil CO 2 and Mineral Composition: A Case Study of the Laiwu Experimental Site," IJERPH, MDPI, vol. 17(16), pages 1-20, August.
    4. Liudmila Tripolskaja & Asta Kazlauskaite-Jadzevice & Virgilijus Baliuckas & Almantas Razukas, 2021. "Natural and Managed Grasslands Productivity during Multiyear in Ex-Arable Lands (in the Context of Climate Change)," Agriculture, MDPI, vol. 11(3), pages 1-13, March.
    5. Jian Zhang & Hengxing Xiang & Shizuka Hashimoto & Toshiya Okuro, 2021. "Observational Scale Matters for Ecosystem Services Interactions and Spatial Distributions: A Case Study of the Ussuri Watershed, China," Sustainability, MDPI, vol. 13(19), pages 1-16, September.
    6. Drew A. Scott & Kathryn D. Eckhoff & Nicola Lorenz & Richard Dick & Rebecca M. Swab, 2021. "Diversity Is Not Everything," Land, MDPI, vol. 10(10), pages 1-20, October.
    7. Jarmila Makovníková & Stanislav Kološta & Filip Flaška & Boris Pálka, 2023. "Factors Influencing the Spatial Distribution of Regulating Agro-Ecosystem Services in Agriculture Soils: A Case Study of Slovakia," Agriculture, MDPI, vol. 13(5), pages 1-22, April.
    8. Vasileios Tsolis & Pantelis Barouchas, 2023. "Biochar as Soil Amendment: The Effect of Biochar on Soil Properties Using VIS-NIR Diffuse Reflectance Spectroscopy, Biochar Aging and Soil Microbiology—A Review," Land, MDPI, vol. 12(8), pages 1-41, August.
    9. Waldemar Zielewicz & Dorota Swędrzyńska & Arkadiusz Swędrzyński & Witold Grzebisz & Piotr Goliński, 2022. "The Influence of Calcium Sulfate and Different Doses of Potassium on the Soil Enzyme Activity and the Yield of the Sward with a Mixture of Alfalfa and Grasses," Agriculture, MDPI, vol. 12(4), pages 1-13, March.
    10. Małgorzata Kozak & Rafał Pudełko, 2021. "Impact Assessment of the Long-Term Fallowed Land on Agricultural Soils and the Possibility of Their Return to Agriculture," Agriculture, MDPI, vol. 11(2), pages 1-16, February.
    11. Köninger, Julia & Lugato, Emanuele & Panagos, Panos & Kochupillai, Mrinalini & Orgiazzi, Alberto & Briones, Maria J.I., 2021. "Manure management and soil biodiversity: Towards more sustainable food systems in the EU," Agricultural Systems, Elsevier, vol. 194(C).
    12. Wirth, Stephen Björn & Taubert, Franziska & Tietjen, Britta & Müller, Christoph & Rolinski, Susanne, 2021. "Do details matter? Disentangling the processes related to plant species interactions in two grassland models of different complexity," Ecological Modelling, Elsevier, vol. 460(C).
    13. Yi Yang & Beibei Liu & Peng Wang & Wei‐Qiang Chen & Timothy M. Smith, 2020. "Toward sustainable climate change adaptation," Journal of Industrial Ecology, Yale University, vol. 24(2), pages 318-330, April.
    14. Marie Spohn & Sumanta Bagchi & Lori A. Biederman & Elizabeth T. Borer & Kari Anne Bråthen & Miguel N. Bugalho & Maria C. Caldeira & Jane A. Catford & Scott L. Collins & Nico Eisenhauer & Nicole Hagena, 2023. "The positive effect of plant diversity on soil carbon depends on climate," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    15. Bolier Torres & Carlos Bravo & Alexandra Torres & Cristhian Tipán-Torres & Julio C. Vargas & Robinson J. Herrera-Feijoo & Marco Heredia-R & Cecilio Barba & Antón García, 2022. "Carbon Stock Assessment in Silvopastoral Systems along an Elevational Gradient: A Study from Cattle Producers in the Sumaco Biosphere Reserve, Ecuadorian Amazon," Sustainability, MDPI, vol. 15(1), pages 1-14, December.
    16. Wolff, Saskia & Hüttel, Silke & Nendel, Claas & Lakes, Tobia, 2020. "Identifying agricultural landscape types for Brandenburg, Germany using IACS data," FORLand Working Papers 23 (2020), Humboldt University Berlin, DFG Research Unit 2569 FORLand "Agricultural Land Markets – Efficiency and Regulation".
    17. Júlia Graziela da Silveira & Sílvio Nolasco de Oliveira Neto & Ana Carolina Barbosa do Canto & Fernanda Figueiredo Granja Dorilêo Leite & Fernanda Reis Cordeiro & Luís Tadeu Assad & Gabriela Cristina , 2022. "Land Use, Land Cover Change and Sustainable Intensification of Agriculture and Livestock in the Amazon and the Atlantic Forest in Brazil," Sustainability, MDPI, vol. 14(5), pages 1-23, February.
    18. Cezary A. Kwiatkowski & Małgorzata Pawłowska & Elżbieta Harasim & Lucjan Pawłowski, 2023. "Strategies of Climate Change Mitigation in Agriculture Plant Production—A Critical Review," Energies, MDPI, vol. 16(10), pages 1-27, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:10:p:5860-:d:813979. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.