IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2021i1p6-d707262.html
   My bibliography  Save this article

Climate Change-Induced Drought Impacts, Adaptation and Mitigation Measures in Semi-Arid Pastoral and Agricultural Watersheds

Author

Listed:
  • Lakshmanan Muralikrishnan

    (Division of Agricultural Extension, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
    These authors contributed equally to this work.)

  • Rabindra N. Padaria

    (Division of Agricultural Extension, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India)

  • Anil K. Choudhary

    (Division of Agronomy, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
    Division of Crop Production, ICAR-Central Potato Research Institute, Shimla 171001, India
    These authors contributed equally to this work.)

  • Anchal Dass

    (Division of Agronomy, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India)

  • Shadi Shokralla

    (Centre for Biodiversity Genomics, University of Guelph, Guelph, ON N1G 2W1, Canada)

  • Tarek K. Zin El-Abedin

    (Department of Agriculture & Biosystems Engineering, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria 21545, Egypt)

  • Shadi A. M. Abdelmohsen

    (Institute for Research and Community Services, Sam Ratulangi University, Manado 95115, Indonesia)

  • Eman A. Mahmoud

    (Department of Food Industries, Faculty of Agriculture, Damietta University, Damietta 34511, Egypt)

  • Hosam O. Elansary

    (Plant Production Department, College of Food & Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia)

Abstract

Periodic drought is a major challenge in drought-prone areas of South Asia. A sample survey of farmers ( n = 400) from South Asia was conducted to study the farmers’ perception about drought impacts on their socio-economic status, agro-biodiversity, and adaptation besides public institutions’ drought mitigation measures. The results revealed reduced surface and groundwater availability, soil degradation, partial or complete crop failure, increased agricultural fallows and wastelands, biodiversity loss, decrease in agricultural yields, pasture lands, and livestock in drought-impacted South Asia. About 16–26% of the farmers perceived a reduction in the agricultural area and production of commercial crops and millets in drought-prone areas, while changes in the cropping of pulses, oilseeds, horticultural, and fodder crops were minimal. About 57–92% of respondents showed a reduction in the consumption of fruits, vegetables, dairy products, and fish. Unemployment, migration, reduced farm income, and malnutrition were major socio-economic impacts among respondents (38–46%). Despite sufficient public support as a mitigation strategy, the farmers had poor participation (8–65%) for agri-information and adaptation (7–36%) against drought impacts. Hence, researchers, extension agents, and policymakers must develop efficient ‘participatory-mode’ drought adaptation and mitigation policies in watershed-based semi-arid pastoral and agricultural regions of South Asia and similar agro-ecologies across the globe.

Suggested Citation

  • Lakshmanan Muralikrishnan & Rabindra N. Padaria & Anil K. Choudhary & Anchal Dass & Shadi Shokralla & Tarek K. Zin El-Abedin & Shadi A. M. Abdelmohsen & Eman A. Mahmoud & Hosam O. Elansary, 2021. "Climate Change-Induced Drought Impacts, Adaptation and Mitigation Measures in Semi-Arid Pastoral and Agricultural Watersheds," Sustainability, MDPI, vol. 14(1), pages 1-18, December.
  • Handle: RePEc:gam:jsusta:v:14:y:2021:i:1:p:6-:d:707262
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/1/6/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/1/6/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. R. Lal, 2007. "Carbon Management in Agricultural Soils," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 12(2), pages 303-322, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giedrius Dabašinskas & Gintarė Sujetovienė, 2024. "Spatial and Temporal Changes in Supply and Demand for Ecosystem Services in Response to Urbanization: A Case Study in Vilnius, Lithuania," Land, MDPI, vol. 13(4), pages 1-15, April.
    2. Xiaochen Liu & Shuai Wang & Qianlai Zhuang & Xinxin Jin & Zhenxing Bian & Mingyi Zhou & Zhuo Meng & Chunlan Han & Xiaoyu Guo & Wenjuan Jin & Yufei Zhang, 2022. "A Review on Carbon Source and Sink in Arable Land Ecosystems," Land, MDPI, vol. 11(4), pages 1-17, April.
    3. Wawrzyniec Czubak & Jagoda Zmyślona, 2024. "Possibilities of Changes in Energy Intensity of Production Depending on the Scale of Farm Investments in a Polish Region," Energies, MDPI, vol. 17(18), pages 1-14, September.
    4. Timothy Capon & Michael Harris & Andrew Reeson, 2013. "The Design of Markets for Soil Carbon Sequestration," Economic Papers, The Economic Society of Australia, vol. 32(2), pages 161-173, June.
    5. Ismail Abd-Elaty & Hanan Shoshah & Martina Zeleňáková & Nand Lal Kushwaha & Osama W. El-Dean, 2022. "Forecasting of Flash Floods Peak Flow for Environmental Hazards and Water Harvesting in Desert Area of El-Qaa Plain, Sinai," IJERPH, MDPI, vol. 19(10), pages 1-12, May.
    6. Zhang, Guo & Wang, Xiaoke & Sun, Binfeng & Zhao, Hong & Lu, Fei & Zhang, Lu, 2016. "Status of mineral nitrogen fertilization and net mitigation potential of the state fertilization recommendation in Chinese cropland," Agricultural Systems, Elsevier, vol. 146(C), pages 1-10.
    7. Martina Lori & Sarah Symnaczik & Paul Mäder & Gerlinde De Deyn & Andreas Gattinger, 2017. "Organic farming enhances soil microbial abundance and activity—A meta-analysis and meta-regression," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-25, July.
    8. Yamei Wang & Shuhe Zhao & Wenting Cai & Joon Heo & Fanchen Peng, 2019. "A Sensitive Band to Optimize Winter Wheat Crop Residue Cover Estimation by Eliminating Moisture Effect," Sustainability, MDPI, vol. 11(11), pages 1-18, May.
    9. Ewa Mackiewicz-Walec & Piotr Jarosław Żarczyński & Sławomir Józef Krzebietke & Katarzyna Żarczyńska, 2024. "Smooth Brome ( Bromus inermis L.)—A Versatile Grass: A Review," Agriculture, MDPI, vol. 14(6), pages 1-17, May.
    10. Xiangcheng Ma & Mengfan Lv & Fangyuan Huang & Peng Zhang & Tie Cai & Zhikuan Jia, 2022. "Effects of Biochar Application on Soil Hydrothermal Environment, Carbon Emissions, and Crop Yield in Wheat Fields under Ridge–Furrow Rainwater Harvesting Planting Mode," Agriculture, MDPI, vol. 12(10), pages 1-19, October.
    11. Gerald Jandl & Wakene Negassa & Kai-Uwe Eckhardt & Peter Leinweber, 2023. "Peat Formation in Rewetted Fens as Reflected by Saturated n -Alkyl Acid Concentrations and Patterns," Land, MDPI, vol. 12(9), pages 1-11, September.
    12. Zhanjun Xu & Yuan Zhang & Jason Yang & Fenwu Liu & Rutian Bi & Hongfen Zhu & Chunjuan Lv & Jian Yu, 2019. "Effect of Underground Coal Mining on the Regional Soil Organic Carbon Pool in Farmland in a Mining Subsidence Area," Sustainability, MDPI, vol. 11(18), pages 1-19, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2021:i:1:p:6-:d:707262. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.