IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2021i1p385-d714758.html
   My bibliography  Save this article

A Study on Near Real-Time Carbon Emission of Roads in Urban Agglomeration of China to Improve Sustainable Development under the Impact of COVID-19 Pandemic

Author

Listed:
  • Gengyuan Liu

    (State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
    Beijing Engineering Research Center for Watershed Environmental Restoration & Integrated Ecological Regulation, Beijing 100875, China)

  • Zining Huang

    (State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
    School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China)

  • Yuan Gao

    (State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China)

  • Mingwan Wu

    (State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China)

  • Chang Liu

    (State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China)

  • Caocao Chen

    (Beijing Climate Change Management Centre, Beijing Municipal Environmental Protection Bureau, Beijing 100086, China)

  • Ginevra Virginia Lombardi

    (Department of Economics and Management, University of Florence, Via delle Pandette 9, 50127 Firenze, Italy)

Abstract

In order to achieve the goal of carbon neutrality and explore the impact of COVID-19 on urban road carbon emission, this study applied and improved a near real-time road carbon emission estimation method for typical Chinese urban agglomeration to improve the rapid evaluation of sustainable development. As a result, we recorded the daily road carbon emission for 12 cities in the Beijing–Tianjin–Hebei (JJJ) region under the impact of the epidemic, exploring the road carbon reduction effect caused by COVID-19. Singular value decomposition method was used to analyze the temporal and spatial characteristics of road carbon emission changes among cities and to explore the urban resilience oriented to public events. The results show: (1) In the JJJ region, the carbon reduction effect caused by COVID-19 is significant, but it lasted for a short time. In the three periods—before the epidemic, strict lockdown period, and post-lockdown period for prevention and control—the total daily road carbon emissions in the 12 cities were 170,000–190,000 tons, 90,000–110,000 tons, and 160,000–180,000 tons, respectively. (2) Cities in the JJJ region showed different road carbon reduction potential under short-term administrative control. During the “strict lockdown period” (23 January–25 February 2020), the average change rate of road carbon emissions in Beijing was −78.72%, which had great potential for reduction. However, the average change rates of Xingtai and Zhangjiakou were only −7.53% and −8.66%, respectively. (3) There are spatiotemporal differences in carbon emissions of urban roads in the JJJ region under the impact of the epidemic. During the gradual reduction of COVID-19 restrictions, great differences between cities on weekends and holidays arise, showing the road carbon emissions in Beijing on weekends and holidays are far lower than that in other cities. (4) In the face of public emergencies, the larger the city is and the more complex the function of the city is, the more difficult for the city is to maintain a steady state. This study not only provides an idea for the dynamic monitoring of urban carbon emissions to improve the rapid evaluation of urban sustainable development in post- and pre-lockdown but also fills the gap in the research on the differences in the response of cities to sudden security incidents from the perspective of road carbon emissions.

Suggested Citation

  • Gengyuan Liu & Zining Huang & Yuan Gao & Mingwan Wu & Chang Liu & Caocao Chen & Ginevra Virginia Lombardi, 2021. "A Study on Near Real-Time Carbon Emission of Roads in Urban Agglomeration of China to Improve Sustainable Development under the Impact of COVID-19 Pandemic," Sustainability, MDPI, vol. 14(1), pages 1-32, December.
  • Handle: RePEc:gam:jsusta:v:14:y:2021:i:1:p:385-:d:714758
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/1/385/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/1/385/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Fangyi & Cai, Bofeng & Ye, Zhaoyang & Wang, Zheng & Zhang, Wei & Zhou, Pan & Chen, Jian, 2019. "Changing patterns and determinants of transportation carbon emissions in Chinese cities," Energy, Elsevier, vol. 174(C), pages 562-575.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Jingjing & Ye, Bin & Liu, Junguo, 2019. "Peak of CO2 emissions in various sectors and provinces of China: Recent progress and avenues for further research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 813-833.
    2. Antunes, Jorge & Tan, Yong & Wanke, Peter & Jabbour, Charbel Jose Chiappetta, 2023. "Impact of R&D and innovation in Chinese road transportation sustainability performance: A novel trigonometric envelopment analysis for ideal solutions (TEA-IS)," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).
    3. Xu, Jin-Hua & Guo, Jian-Feng & Peng, Binbin & Nie, Hongguang & Kemp, Rene, 2020. "Energy growth sources and future energy-saving potentials in passenger transportation sector in China," Energy, Elsevier, vol. 206(C).
    4. Isabella Yunfei Zeng & Jingrui Chen & Ziheng Niu & Qingfei Liu & Tian Wu, 2022. "The GHG Emissions Assessment of Online Car-Hailing Development under the Intervention of Evaluation Policies in China," Sustainability, MDPI, vol. 14(3), pages 1-25, February.
    5. Qingqing Qiao & Fengming Tao & Hailin Wu & Xuewei Yu & Mengjun Zhang, 2020. "Optimization of a Capacitated Vehicle Routing Problem for Sustainable Municipal Solid Waste Collection Management Using the PSO-TS Algorithm," IJERPH, MDPI, vol. 17(6), pages 1-22, March.
    6. Jingyuan Li & Jinhua Cheng & Beidi Diao & Yaqi Wu & Peiqi Hu & Shurui Jiang, 2021. "Social and Economic Factors of Industrial Carbon Dioxide in China: From the Perspective of Spatiotemporal Transition," Sustainability, MDPI, vol. 13(8), pages 1-16, April.
    7. Gürkan Kumbaroğlu & Cansu Canaz & Jonathan Deason & Ekundayo Shittu, 2020. "Profitable Decarbonization through E-Mobility," Energies, MDPI, vol. 13(16), pages 1-23, August.
    8. Li, Shupeng & Niu, Liping & Yue, Qiang & Zhang, Tingan, 2022. "Trajectory, driving forces, and mitigation potential of energy-related greenhouse gas (GHG) emissions in China's primary aluminum industry," Energy, Elsevier, vol. 239(PB).
    9. Wu Xie & Wenzhe Guo & Wenbin Shao & Fangyi Li & Zhipeng Tang, 2021. "Environmental and Health Co-Benefits of Coal Regulation under the Carbon Neutral Target: A Case Study in Anhui Province, China," Sustainability, MDPI, vol. 13(11), pages 1-15, June.
    10. Changzheng Zhu & Sha Yang & Pengbo Liu, 2022. "Study on the Factors Influencing on the Carbon Emissions of Shaanxi Province’s Transportation Industry in China," Sustainability, MDPI, vol. 14(14), pages 1-14, July.
    11. Jianghua Liu & Mengxu Li & Yitao Ding, 2021. "Econometric analysis of the impact of the urban population size on carbon dioxide (CO2) emissions in China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(12), pages 18186-18203, December.
    12. Sou, Weng Sut & Goh, Tian & Lee, Xin Ni & Ng, Szu Hui & Chai, Kah-Hin, 2022. "Reducing the carbon intensity of international shipping – The impact of energy efficiency measures," Energy Policy, Elsevier, vol. 170(C).
    13. Fang, Kai & Li, Chenglin & Tang, Yiqi & He, Jianjian & Song, Junnian, 2022. "China’s pathways to peak carbon emissions: New insights from various industrial sectors," Applied Energy, Elsevier, vol. 306(PA).
    14. Li, Fangyi & Li, Fei & Cai, Bofeng & Lyu, Chen & Xie, Wu, 2024. "Role of Chinese cities in abating aviation carbon emissions based on gridded population data and power law model," Energy, Elsevier, vol. 288(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2021:i:1:p:385-:d:714758. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.