IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i9p5239-d550281.html
   My bibliography  Save this article

Assessing Climate Change and Land-Use Impacts on Drinking Water Resources in Karstic Catchments (Southern Croatia)

Author

Listed:
  • Matko Patekar

    (Department of Hydrogeology and Engineering Geology, Croatian Geological Survey, 10000 Zagreb, Croatia)

  • Ivona Baniček

    (Department of Hydrogeology and Engineering Geology, Croatian Geological Survey, 10000 Zagreb, Croatia)

  • Josip Rubinić

    (Department of Hydrotechnics and Geotechnics, Faculty of Civil Engineering, University of Rijeka, 51000 Rijeka, Croatia)

  • Jasmina Lukač Reberski

    (Department of Hydrogeology and Engineering Geology, Croatian Geological Survey, 10000 Zagreb, Croatia)

  • Ivana Boljat

    (Department of Hydrogeology and Engineering Geology, Croatian Geological Survey, 10000 Zagreb, Croatia)

  • Ana Selak

    (Department of Hydrogeology and Engineering Geology, Croatian Geological Survey, 10000 Zagreb, Croatia)

  • Marina Filipović

    (Department of Hydrogeology and Engineering Geology, Croatian Geological Survey, 10000 Zagreb, Croatia)

  • Josip Terzić

    (Department of Hydrogeology and Engineering Geology, Croatian Geological Survey, 10000 Zagreb, Croatia)

Abstract

The Mediterranean freshwater resources, mostly represented by groundwater, are under increasing pressure due to natural and anthropogenic factors. In this study, we investigated possible negative effects of climate change and land-use practices on water quality and availability from five springs in the karstic catchments in southern Croatia. The investigated springs are used in the regional public water supply system. Firstly, we employed hydrogeochemical field and laboratory analyses to detect possible traces of anthropogenic activity originating from specific land use. Additionally, we performed hydrological and climate modeling to detect changes in the air temperature, precipitation, and runoff. In particular, we used three regional climate models (Aladin, RegCM3, and Promes). The results estimated an increase in the mean annual air temperature, changes in the precipitation patterns, and reductions in runoff in the study area. Hydrochemical analyses showed standard ion concentrations for karst groundwaters, elevated sulfates due to evaporite deposits in the hinterland, surprisingly low nitrate levels which disproved expected agricultural pollution, and high microbiological activity. Significant water losses are expected in the near future which require immediate attention in order to develop adaptation strategies that focus on sustainable utilization and resilience of freshwater resources. This paper was based on the Interreg Central Europe PROLINE-CE project research in the South Dalmatia.

Suggested Citation

  • Matko Patekar & Ivona Baniček & Josip Rubinić & Jasmina Lukač Reberski & Ivana Boljat & Ana Selak & Marina Filipović & Josip Terzić, 2021. "Assessing Climate Change and Land-Use Impacts on Drinking Water Resources in Karstic Catchments (Southern Croatia)," Sustainability, MDPI, vol. 13(9), pages 1-20, May.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:9:p:5239-:d:550281
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/9/5239/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/9/5239/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiao-Peng Song & Matthew C. Hansen & Stephen V. Stehman & Peter V. Potapov & Alexandra Tyukavina & Eric F. Vermote & John R. Townshend, 2018. "Global land change from 1982 to 2016," Nature, Nature, vol. 560(7720), pages 639-643, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Henghua Zhu & Jianwei Zhou & Zhizheng Liu & Lizhi Yang & Yunde Liu, 2021. "Hydrogeochemistry Evidence for Impacts of Chemical Acidic Wastewater on Karst Aquifer in Dawu Water Source Area, Northern China," IJERPH, MDPI, vol. 18(16), pages 1-10, August.
    2. Yang Wang & Tingting Xia & Remina Shataer & Shuai Zhang & Zhi Li, 2021. "Analysis of Characteristics and Driving Factors of Land-Use Changes in the Tarim River Basin from 1990 to 2018," Sustainability, MDPI, vol. 13(18), pages 1-19, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Srijana Shrestha & Khem Narayan Poudyal & Nawraj Bhattarai & Mohan B. Dangi & John J. Boland, 2022. "An Assessment of the Impact of Land Use and Land Cover Change on the Degradation of Ecosystem Service Values in Kathmandu Valley Using Remote Sensing and GIS," Sustainability, MDPI, vol. 14(23), pages 1-18, November.
    2. Qiu, Bingwen & Li, Haiwen & Tang, Zhenghong & Chen, Chongcheng & Berry, Joe, 2020. "How cropland losses shaped by unbalanced urbanization process?," Land Use Policy, Elsevier, vol. 96(C).
    3. Weijia Chen & Yongquan Lu & Guilin Liu, 2022. "Balancing cropland gain and desert vegetation loss: The key to rural revitalization in Xinjiang, China," Growth and Change, Wiley Blackwell, vol. 53(3), pages 1122-1145, September.
    4. Baoni Li & Lihua Xiong & Quan Zhang & Shilei Chen & Han Yang & Shuhui Guo, 2022. "Effects of land use/cover change on atmospheric humidity in three urban agglomerations in the Yangtze River Economic Belt, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(1), pages 577-613, August.
    5. Wei Fan & Xiankun Yang & Shirong Cai & Haidong Ou & Tao Zhou & Dakang Wang, 2024. "Land-Use/Cover Change and Driving Forces in the Pan-Pearl River Basin during the Period 1985–2020," Land, MDPI, vol. 13(6), pages 1-26, June.
    6. Jing Duan & Pu Shi & Yuanyuan Yang & Dongyan Wang, 2024. "Spatiotemporal Change Analysis and Multi-Scenario Modeling of Ecosystem Service Values: A Case Study of the Beijing-Tianjin-Hebei Urban Agglomeration, China," Land, MDPI, vol. 13(11), pages 1-21, October.
    7. Tatiana Montenegro-Romero & Cristián Vergara-Fernández & Fabian Argandoña-Castro & Fernando Peña-Cortés, 2022. "Agriculture and Temperate Fruit Crop Dynamics in South-Central Chile: Challenges for Fruit Crop Production in La Araucanía Region, Chile," Land, MDPI, vol. 11(6), pages 1-12, May.
    8. Michel Opelele Omeno & Ying Yu & Wenyi Fan & Tolerant Lubalega & Chen Chen & Claude Kachaka Sudi Kaiko, 2021. "Analysis of the Impact of Land-Use/Land-Cover Change on Land-Surface Temperature in the Villages within the Luki Biosphere Reserve," Sustainability, MDPI, vol. 13(20), pages 1-23, October.
    9. Yu, Zhaowu & Chen, Tingting & Yang, Gaoyuan & Sun, Ranhao & Xie, Wei & Vejre, Henrik, 2020. "Quantifying seasonal and diurnal contributions of urban landscapes to heat energy dynamics," Applied Energy, Elsevier, vol. 264(C).
    10. Min Wang & Kongtao Qin & Yanhong Jia & Xiaohan Yuan & Shuqi Yang, 2022. "Land Use Transition and Eco-Environmental Effects in Karst Mountain Area Based on Production-Living-Ecological Space: A Case Study of Longlin Multinational Autonomous County, Southwest China," IJERPH, MDPI, vol. 19(13), pages 1-23, June.
    11. Xiaotong Wang & Jiazheng Han & Jian Lin, 2022. "Response of Land Use and Net Primary Productivity to Coal Mining: A Case Study of Huainan City and Its Mining Areas," Land, MDPI, vol. 11(7), pages 1-16, June.
    12. Chen Ma & Runze Nie & Guoming Du, 2023. "Responses of Soil Collembolans to Land Degradation in a Black Soil Region in China," IJERPH, MDPI, vol. 20(6), pages 1-13, March.
    13. Chasia, Stanley & Olang, Luke O. & Sitoki, Lewis, 2023. "Modelling of land-use/cover change trajectories in a transboundary catchment of the Sio-Malaba-Malakisi Region in East Africa using the CLUE-s model," Ecological Modelling, Elsevier, vol. 476(C).
    14. Nguyen Van Hiep & Nguyen Thi Thanh Thao & Luong Van Viet & Huynh Cong Luc & Le Huy Ba, 2023. "Affecting of Nature and Human Activities on the Trend of Vegetation Health Indices in Dak Nong Province, Vietnam," Sustainability, MDPI, vol. 15(7), pages 1-21, March.
    15. Zhihua Liu & John S. Kimball & Ashley P. Ballantyne & Nicholas C. Parazoo & Wen J. Wang & Ana Bastos & Nima Madani & Susan M. Natali & Jennifer D. Watts & Brendan M. Rogers & Philippe Ciais & Kailiang, 2022. "Respiratory loss during late-growing season determines the net carbon dioxide sink in northern permafrost regions," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    16. Bonilla-Moheno, Martha & Aide, T. Mitchell, 2020. "Beyond deforestation: Land cover transitions in Mexico," Agricultural Systems, Elsevier, vol. 178(C).
    17. Xiaoyu Niu & Yunfeng Hu & Zhongying Lei & Huimin Yan & Junzhi Ye & Hao Wang, 2022. "Temporal and Spatial Evolution Characteristics and Its Driving Mechanism of Land Use/Cover in Vietnam from 2000 to 2020," Land, MDPI, vol. 11(6), pages 1-19, June.
    18. Zhangxuan Qin & Xiaolin Liu & Xiaoyan Lu & Mengfei Li & Fei Li, 2022. "Grain Production Space Reconstruction and Its Influencing Factors in the Loess Plateau," IJERPH, MDPI, vol. 19(10), pages 1-18, May.
    19. Yuji Hara & Chizuko Hirai & Yuki Sampei, 2022. "Mapping Uncounted Anthropogenic Fill Flows: Environmental Impact and Mitigation," Land, MDPI, vol. 11(11), pages 1-19, November.
    20. Liu, Zhengjia & Wang, Jieyong & Wang, Xiaoyue & Wang, Yongsheng, 2020. "Understanding the impacts of ‘Grain for Green’ land management practice on land greening dynamics over the Loess Plateau of China," Land Use Policy, Elsevier, vol. 99(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:9:p:5239-:d:550281. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.