IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v178y2020ics0308521x19305906.html
   My bibliography  Save this article

Beyond deforestation: Land cover transitions in Mexico

Author

Listed:
  • Bonilla-Moheno, Martha
  • Aide, T. Mitchell

Abstract

Conversion of land cover is one of the main causes of global environmental change and identifying the regions where sustained trends of land change are occurring provides useful information for land and resources management. For all ecoregions in Mexico, we analyzed land use changes over 14 years (2001–2014) using MODIS images (250m) and identified regions that had significant gains or loss of woody vegetation, pasturelands, or croplands. The land use patterns varied greatly among the 40 major ecoregions, but in general, woody vegetation and cropland cover increased while pastures decreased. In contrast to previous studies, much of the increase in croplands did not correspond with hotspots of decline in pastures but occurred in the Sonora and Chihuahuan deserts ecoregions in northern Mexico. Industrial cotton, sorghum, and pecans production for export where the major crops responsible for the increase in these ecoregions. Similar to patterns in the rest of Latin America, pasture expansion mainly occurred in ecoregions in the tropical moist forest biome (e.g. Veracruz and Peten-Veracruz ecoregions). The ecoregions that experienced the greatest increase in woody vegetation were the Balsas dry forest ecoregion along the Pacific coast and Trans Mexican volcanic oak-pine ecoregion. In both regions, rural-urban migration appears to be an important driver of the transition from grasslands to woody vegetation, while the conversion of croplands to woody vegetation in the Tamaulipan mezquital ecoregion was clearly associated with drug related violence. This study documents how the complex interactions among national and international demand for agricultural products, national policies, demography, violence and climate change are affecting land change across Mexico.

Suggested Citation

  • Bonilla-Moheno, Martha & Aide, T. Mitchell, 2020. "Beyond deforestation: Land cover transitions in Mexico," Agricultural Systems, Elsevier, vol. 178(C).
  • Handle: RePEc:eee:agisys:v:178:y:2020:i:c:s0308521x19305906
    DOI: 10.1016/j.agsy.2019.102734
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X19305906
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2019.102734?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. Lenzen & D. Moran & K. Kanemoto & B. Foran & L. Lobefaro & A. Geschke, 2012. "International trade drives biodiversity threats in developing nations," Nature, Nature, vol. 486(7401), pages 109-112, June.
    2. Alejandro Ismael Monterroso-Rivas & Ana Cecilia Conde-Álvarez & José Luís Pérez-Damian & Jorge López-Blanco & Marcos Gaytan-Dimas & Jesús David Gómez-Díaz, 2018. "Multi-temporal assessment of vulnerability to climate change: insights from the agricultural sector in Mexico," Climatic Change, Springer, vol. 147(3), pages 457-473, April.
    3. Yankuic Galvan-Miyoshi & Robert Walker & Barney Warf, 2015. "Land Change Regimes and the Evolution of the Maize-Cattle Complex in Neoliberal Mexico," Land, MDPI, vol. 4(3), pages 1-24, August.
    4. Xiao-Peng Song & Matthew C. Hansen & Stephen V. Stehman & Peter V. Potapov & Alexandra Tyukavina & Eric F. Vermote & John R. Townshend, 2018. "Global land change from 1982 to 2016," Nature, Nature, vol. 560(7720), pages 639-643, August.
    5. Quetzalcóatl Orozco-Ramírez & Marta Astier & Sara Barrasa, 2017. "Agricultural Land Use Change after NAFTA in Central West Mexico," Land, MDPI, vol. 6(4), pages 1-14, October.
    6. Zia Mehrabi & Erle C. Ellis & Navin Ramankutty, 2018. "The challenge of feeding the world while conserving half the planet," Nature Sustainability, Nature, vol. 1(8), pages 409-412, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hualou Long & Yingnan Zhang & Li Ma & Shuangshuang Tu, 2021. "Land Use Transitions: Progress, Challenges and Prospects," Land, MDPI, vol. 10(9), pages 1-20, August.
    2. Taingaun Sourn & Sophak Pok & Phanith Chou & Nareth Nut & Dyna Theng & Phanna Rath & Manuel R. Reyes & P.V. Vara Prasad, 2021. "Evaluation of Land Use and Land Cover Change and Its Drivers in Battambang Province, Cambodia from 1998 to 2018," Sustainability, MDPI, vol. 13(20), pages 1-22, October.
    3. Andres M. Urcuqui-Bustamante & Theresa L. Selfa & Paul Hirsch & Catherine M. Ashcraft, 2021. "Uncovering Stakeholder Participation in Payment for Hydrological Services (PHS) Program Decision Making in Mexico and Colombia," Sustainability, MDPI, vol. 13(15), pages 1-26, July.
    4. Galeana-Pizaña, J. Mauricio & Couturier, Stéphane & Figueroa, Daniela & Jiménez, Aldo Daniel, 2021. "Is rural food security primarily associated with smallholder agriculture or with commercial agriculture?: An approach to the case of Mexico using structural equation modeling," Agricultural Systems, Elsevier, vol. 190(C).
    5. Alpuche Álvarez, Yair Asael & Jepsen, Martin Rudbeck & Müller, Daniel & Rasmussen, Laura Vang & Zhanli, Sun, 2024. "Unraveling the complexity of land use change and path dependency in agri-environmental schemes for small farmers: A serious game approach," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 139.
    6. Díaz Baca, Manuel Francisco & Moreno Lerma, Leonardo & Triana Ángel, Natalia & Burkart, Stefan, 2024. "The relationships between land tenure, cattle production, and climate change – A systematic literature review," Land Use Policy, Elsevier, vol. 141(C).
    7. Hernández-Aguilar, J.A. & Durán, E. & de Jong, W. & Velázquez, A. & Pérez-Verdín, G., 2021. "Understanding drivers of local forest transition in community forests in Mixteca Alta, Oaxaca, Mexico," Forest Policy and Economics, Elsevier, vol. 131(C).
    8. Cristina Martínez-Garza & Eliane Ceccon & Moisés Méndez-Toribio, 2022. "Ecological and Social Limitations for Mexican Dry Forest Restoration: A Systematic Review," Sustainability, MDPI, vol. 14(7), pages 1-21, March.
    9. Cynthia Simmons & Marta Astier & Robert Walker & Jaime Fernando Navia-Antezana & Yan Gao & Yankuic Galván-Miyoshi & Dan Klooster, 2023. "Forest Transition and Fuzzy Environments in Neoliberal Mexico," Land, MDPI, vol. 12(4), pages 1-15, April.
    10. Alfonso De la Vega-Rivera & Leticia Merino-Pérez, 2021. "Socio-Environmental Impacts of the Avocado Boom in the Meseta Purépecha, Michoacán, Mexico," Sustainability, MDPI, vol. 13(13), pages 1-18, June.
    11. Jocelyn Alejandra Cortez-Núñez & María Eugenia Gutiérrez-Castillo & Violeta Y. Mena-Cervantes & Ángel Refugio Terán-Cuevas & Luis Raúl Tovar-Gálvez & Juan Velasco, 2020. "A GIS Approach Land Suitability and Availability Analysis of Jatropha Curcas L. Growth in Mexico as a Potential Source for Biodiesel Production," Energies, MDPI, vol. 13(22), pages 1-23, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Orozco-Meléndez, José Francisco & Paneque-Gálvez, Jaime, 2022. "A role for grassroots innovation toward agroecological transitions in the Global South? Evidence from Mexico," Ecological Economics, Elsevier, vol. 201(C).
    2. Galeana-Pizaña, J. Mauricio & Couturier, Stéphane & Figueroa, Daniela & Jiménez, Aldo Daniel, 2021. "Is rural food security primarily associated with smallholder agriculture or with commercial agriculture?: An approach to the case of Mexico using structural equation modeling," Agricultural Systems, Elsevier, vol. 190(C).
    3. Cynthia Simmons & Marta Astier & Robert Walker & Jaime Fernando Navia-Antezana & Yan Gao & Yankuic Galván-Miyoshi & Dan Klooster, 2023. "Forest Transition and Fuzzy Environments in Neoliberal Mexico," Land, MDPI, vol. 12(4), pages 1-15, April.
    4. Paradis, Emmanuel, 2021. "Forest gains and losses in Southeast Asia over 27 years: The slow convergence towards reforestation," Forest Policy and Economics, Elsevier, vol. 122(C).
    5. Thomas Wiedmann, 2017. "An input–output virtual laboratory in practice – survey of uptake, usage and applications of the first operational IELab," Economic Systems Research, Taylor & Francis Journals, vol. 29(2), pages 296-312, April.
    6. Srijana Shrestha & Khem Narayan Poudyal & Nawraj Bhattarai & Mohan B. Dangi & John J. Boland, 2022. "An Assessment of the Impact of Land Use and Land Cover Change on the Degradation of Ecosystem Service Values in Kathmandu Valley Using Remote Sensing and GIS," Sustainability, MDPI, vol. 14(23), pages 1-18, November.
    7. Qiu, Bingwen & Li, Haiwen & Tang, Zhenghong & Chen, Chongcheng & Berry, Joe, 2020. "How cropland losses shaped by unbalanced urbanization process?," Land Use Policy, Elsevier, vol. 96(C).
    8. Weijia Chen & Yongquan Lu & Guilin Liu, 2022. "Balancing cropland gain and desert vegetation loss: The key to rural revitalization in Xinjiang, China," Growth and Change, Wiley Blackwell, vol. 53(3), pages 1122-1145, September.
    9. Baoni Li & Lihua Xiong & Quan Zhang & Shilei Chen & Han Yang & Shuhui Guo, 2022. "Effects of land use/cover change on atmospheric humidity in three urban agglomerations in the Yangtze River Economic Belt, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(1), pages 577-613, August.
    10. Lilian Cervo Cabrera & Carlos Eduardo Caldarelli & Marcia Regina Gabardo Camara, 2020. "Mapping collaboration in international coffee certification research," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(3), pages 2597-2618, September.
    11. Muhammet Enis Bulak & Murat Kucukvar, 2022. "How ecoefficient is European food consumption? A frontier‐based multiregional input–output analysis," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(5), pages 817-832, October.
    12. Wei Fan & Xiankun Yang & Shirong Cai & Haidong Ou & Tao Zhou & Dakang Wang, 2024. "Land-Use/Cover Change and Driving Forces in the Pan-Pearl River Basin during the Period 1985–2020," Land, MDPI, vol. 13(6), pages 1-26, June.
    13. Stoeckli, Sabrina & Merian, Sybilla & Wanner, Silvan & Stucki, Matthias & Chaudhary, Abhishek, 2024. "Advancing Biodiversity Footprinting for Food-Related Behavior Change," OSF Preprints zpvq4, Center for Open Science.
    14. Eivind Lekve Bjelle & Johannes Többen & Konstantin Stadler & Thomas Kastner & Michaela C. Theurl & Karl-Heinz Erb & Kjartan-Steen Olsen & Kirsten S. Wiebe & Richard Wood, 2020. "Adding country resolution to EXIOBASE: impacts on land use embodied in trade," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 9(1), pages 1-25, December.
    15. Mi, Zhifu & Zhang, Yunkun & Guan, Dabo & Shan, Yuli & Liu, Zhu & Cong, Ronggang & Yuan, Xiao-Chen & Wei, Yi-Ming, 2016. "Consumption-based emission accounting for Chinese cities," Applied Energy, Elsevier, vol. 184(C), pages 1073-1081.
    16. Meghan Beck-O’Brien & Stefan Bringezu, 2021. "Biodiversity Monitoring in Long-Distance Food Supply Chains: Tools, Gaps and Needs to Meet Business Requirements and Sustainability Goals," Sustainability, MDPI, vol. 13(15), pages 1-23, July.
    17. Tatiana Montenegro-Romero & Cristián Vergara-Fernández & Fabian Argandoña-Castro & Fernando Peña-Cortés, 2022. "Agriculture and Temperate Fruit Crop Dynamics in South-Central Chile: Challenges for Fruit Crop Production in La Araucanía Region, Chile," Land, MDPI, vol. 11(6), pages 1-12, May.
    18. Michel Opelele Omeno & Ying Yu & Wenyi Fan & Tolerant Lubalega & Chen Chen & Claude Kachaka Sudi Kaiko, 2021. "Analysis of the Impact of Land-Use/Land-Cover Change on Land-Surface Temperature in the Villages within the Luki Biosphere Reserve," Sustainability, MDPI, vol. 13(20), pages 1-23, October.
    19. Yu, Zhaowu & Chen, Tingting & Yang, Gaoyuan & Sun, Ranhao & Xie, Wei & Vejre, Henrik, 2020. "Quantifying seasonal and diurnal contributions of urban landscapes to heat energy dynamics," Applied Energy, Elsevier, vol. 264(C).
    20. Xiaowei Yao & Zhanqi Wang & Hongwei Zhang, 2016. "Dynamic Changes of the Ecological Footprint and Its Component Analysis Response to Land Use in Wuhan, China," Sustainability, MDPI, vol. 8(4), pages 1-14, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:178:y:2020:i:c:s0308521x19305906. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.