IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i9p5049-d547118.html
   My bibliography  Save this article

Methodology of Implementing Virtual Reality in Education for Industry 4.0

Author

Listed:
  • Andrzej Paszkiewicz

    (Department of Complex Systems, The Faculty of Electrical and Computer Engineering, Rzeszow University of Technology, 35-959 Rzeszów, Poland)

  • Mateusz Salach

    (Department of Complex Systems, The Faculty of Electrical and Computer Engineering, Rzeszow University of Technology, 35-959 Rzeszów, Poland)

  • Paweł Dymora

    (Department of Complex Systems, The Faculty of Electrical and Computer Engineering, Rzeszow University of Technology, 35-959 Rzeszów, Poland)

  • Marek Bolanowski

    (Department of Complex Systems, The Faculty of Electrical and Computer Engineering, Rzeszow University of Technology, 35-959 Rzeszów, Poland)

  • Grzegorz Budzik

    (Department of Machine Design, Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, 35-959 Rzeszów, Poland)

  • Przemysław Kubiak

    (Faculty of Electrical and Computer Engineering, Rzeszow University of Technology, 35-959 Rzeszów, Poland)

Abstract

This paper presents an entirely new approach to the use of virtual reality (VR) in the educational process for the needs of Industry 4.0. It is based on the proposed comprehensive methodology, including the design, creation, implementation and evaluation of individual courses implemented in a VR environment. An essential feature of the new methodology is its universality and comprehensiveness. Thanks to that, it can be applied in such areas as higher education, aviation, automotive, shipbuilding, energy and many others. The paper also identifies the significant advantages and disadvantages of VR-based education that may determine its use scope and profile. In addition, on the basis of the proposed methodology, a model of a training station using VR technology has been developed to enable the realization of training classes in the field of firefighting activities that should be undertaken during the hazard arising from the operation of a numerically controlled production machine. Results of the conducted training using this station were also presented. The study showed the potential of training based on a virtual environment to improve participants’ skills and knowledge. The development and implementation of adequate courses in the VR environment can reduce costs and increase the safety and efficiency of employees’ performed activities.

Suggested Citation

  • Andrzej Paszkiewicz & Mateusz Salach & Paweł Dymora & Marek Bolanowski & Grzegorz Budzik & Przemysław Kubiak, 2021. "Methodology of Implementing Virtual Reality in Education for Industry 4.0," Sustainability, MDPI, vol. 13(9), pages 1-25, April.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:9:p:5049-:d:547118
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/9/5049/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/9/5049/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Syed Hammad Mian & Bashir Salah & Wadea Ameen & Khaja Moiduddin & Hisham Alkhalefah, 2020. "Adapting Universities for Sustainability Education in Industry 4.0: Channel of Challenges and Opportunities," Sustainability, MDPI, vol. 12(15), pages 1-33, July.
    2. Yongxin Liao & Fernando Deschamps & Eduardo de Freitas Rocha Loures & Luiz Felipe Pierin Ramos, 2017. "Past, present and future of Industry 4.0 - a systematic literature review and research agenda proposal," International Journal of Production Research, Taylor & Francis Journals, vol. 55(12), pages 3609-3629, June.
    3. Kuan Chung Lin & Joseph Z. Shyu & Kun Ding, 2017. "A Cross-Strait Comparison of Innovation Policy under Industry 4.0 and Sustainability Development Transition," Sustainability, MDPI, vol. 9(5), pages 1-17, May.
    4. Bashir Salah & Mustufa Haider Abidi & Syed Hammad Mian & Mohammed Krid & Hisham Alkhalefah & Ali Abdo, 2019. "Virtual Reality-Based Engineering Education to Enhance Manufacturing Sustainability in Industry 4.0," Sustainability, MDPI, vol. 11(5), pages 1-19, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chun-Chia Wang & Jason C. Hung & Hsuan-Chu Chen, 2021. "How Prior Knowledge Affects Visual Attention of Japanese Mimicry and Onomatopoeia and Learning Outcomes: Evidence from Virtual Reality Eye Tracking," Sustainability, MDPI, vol. 13(19), pages 1-28, October.
    2. Věroslav Holuša & Michal Vaněk & Filip Beneš & Jiří Švub & Pavel Staša, 2023. "Virtual Reality as a Tool for Sustainable Training and Education of Employees in Industrial Enterprises," Sustainability, MDPI, vol. 15(17), pages 1-24, August.
    3. Kichan Nam & Christopher S. Dutt & Jeff Baker, 2023. "Authenticity in Objects and Activities: Determinants of Satisfaction with Virtual Reality Experiences of Heritage and Non-Heritage Tourism Sites," Information Systems Frontiers, Springer, vol. 25(3), pages 1219-1237, June.
    4. Aqeel Farooq & Mehdi Seyedmahmoudian & Ben Horan & Saad Mekhilef & Alex Stojcevski, 2021. "Overview and Exploitation of Haptic Tele-Weight Device in Virtual Shopping Stores," Sustainability, MDPI, vol. 13(13), pages 1-13, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bai, Chunguang & Dallasega, Patrick & Orzes, Guido & Sarkis, Joseph, 2020. "Industry 4.0 technologies assessment: A sustainability perspective," International Journal of Production Economics, Elsevier, vol. 229(C).
    2. Guilherme F. Frederico, 2021. "Project Management for Supply Chains 4.0: A conceptual framework proposal based on PMBOK methodology," Operations Management Research, Springer, vol. 14(3), pages 434-450, December.
    3. Muawia Ramadan & Bashir Salah & Mohammed Othman & Arsath Abbasali Ayubali, 2020. "Industry 4.0-Based Real-Time Scheduling and Dispatching in Lean Manufacturing Systems," Sustainability, MDPI, vol. 12(6), pages 1-18, March.
    4. Sony, Michael & Naik, Subhash, 2020. "Industry 4.0 integration with socio-technical systems theory: A systematic review and proposed theoretical model," Technology in Society, Elsevier, vol. 61(C).
    5. Joanna Wyrwa, 2020. "A review of the European Union financial instruments supporting the innovative activity of enterprises in the context of Industry 4.0 in the years 2021-2027," Entrepreneurship and Sustainability Issues, VsI Entrepreneurship and Sustainability Center, vol. 8(1), pages 1146-1161, September.
    6. Govindan, Kannan & Kannan, Devika & Jørgensen, Thomas Ballegård & Nielsen, Tim Straarup, 2022. "Supply Chain 4.0 performance measurement: A systematic literature review, framework development, and empirical evidence," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    7. Shuting Wang & Jie Meng & Yuanlong Xie & Liquan Jiang & Han Ding & Xinyu Shao, 2023. "Reference training system for intelligent manufacturing talent education: platform construction and curriculum development," Journal of Intelligent Manufacturing, Springer, vol. 34(3), pages 1125-1164, March.
    8. Rekettye, Gábor & Rekettye, Gábor, 2019. "The Effects of Digitalization on Customer Experience," Proceedings of the ENTRENOVA - ENTerprise REsearch InNOVAtion Conference (2019), Rovinj, Croatia, in: Proceedings of the ENTRENOVA - ENTerprise REsearch InNOVAtion Conference, Rovinj, Croatia, 12-14 September 2019, pages 414-420, IRENET - Society for Advancing Innovation and Research in Economy, Zagreb.
    9. Christoph March & Ina Schieferdecker, 2021. "Technological Sovereignty as Ability, Not Autarky," CESifo Working Paper Series 9139, CESifo.
    10. Ghannouchi, Imen, 2023. "Examining the dynamic nexus between industry 4.0 technologies and sustainable economy: New insights from empirical evidence using GMM estimator across 20 OECD nations," Technology in Society, Elsevier, vol. 75(C).
    11. Srivastava, Deepak Kumar & Kumar, Vikas & Ekren, Banu Yetkin & Upadhyay, Arvind & Tyagi, Mrinal & Kumari, Archana, 2022. "Adopting Industry 4.0 by leveraging organisational factors," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    12. Radanliev, Petar & De Roure, Dave & R.C. Nurse, Jason & Nicolescu, Razvan & Huth, Michael & Cannady, Stacy & Mantilla Montalvo, Rafael, 2019. "Cyber Security Framework for the Internet-of-Things in Industry 4.0," MPRA Paper 92565, University Library of Munich, Germany, revised 2019.
    13. Marta Gotz, 2019. "The Industry 4.0 Induced Agility and New Skills in Clusters," Foresight and STI Governance (Foresight-Russia till No. 3/2015), National Research University Higher School of Economics, vol. 13(2), pages 72-83.
    14. Brij B. Gupta & Akshat Gaurav & Prabin Kumar Panigrahi, 2023. "Analysis of the development of sustainable entrepreneurship practices through knowledge and smart innovative based education system," International Entrepreneurship and Management Journal, Springer, vol. 19(2), pages 923-940, June.
    15. Timothy M. Young & Ampalavanar Nanthakumar & Hari Nanthakumar, 2021. "On the Use of Copula for Quality Control Based on an AR(1) Model," Mathematics, MDPI, vol. 9(18), pages 1-13, September.
    16. Li Da Xu, 2020. "The contribution of systems science to Industry 4.0," Systems Research and Behavioral Science, Wiley Blackwell, vol. 37(4), pages 618-631, July.
    17. Özköse, Hakan & Güney, Gül, 2023. "The effects of industry 4.0 on productivity: A scientific mapping study," Technology in Society, Elsevier, vol. 75(C).
    18. Siqing Shan & Xin Wen & Yigang Wei & Zijin Wang & Yong Chen, 2020. "Intelligent manufacturing in industry 4.0: A case study of Sany heavy industry," Systems Research and Behavioral Science, Wiley Blackwell, vol. 37(4), pages 679-690, July.
    19. Yasanur Kayikci & Yigit Kazancoglu & Nazlican Gozacan‐Chase & Cisem Lafci, 2022. "Analyzing the drivers of smart sustainable circular supply chain for sustainable development goals through stakeholder theory," Business Strategy and the Environment, Wiley Blackwell, vol. 31(7), pages 3335-3353, November.
    20. Bartoloni, Sara & Calò, Ernesto & Marinelli, Luca & Pascucci, Federica & Dezi, Luca & Carayannis, Elias & Revel, Gian Marco & Gregori, Gian Luca, 2022. "Towards designing society 5.0 solutions: The new Quintuple Helix - Design Thinking approach to technology," Technovation, Elsevier, vol. 113(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:9:p:5049-:d:547118. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.