IDEAS home Printed from https://ideas.repec.org/a/spr/opmare/v14y2021i3d10.1007_s12063-021-00204-0.html
   My bibliography  Save this article

Project Management for Supply Chains 4.0: A conceptual framework proposal based on PMBOK methodology

Author

Listed:
  • Guilherme F. Frederico

    (Federal University of Paraná, UFPR School of Management)

Abstract

This paper aims to present a conceptual framework for Project Management on supply chains in the context of the Fourth Industrial Revolution (Supply Chains 4.0), taking into consideration the gap that exists regarding this subject in the literature. An analysis of the literature, evidencing this gap has been conducted using the Web of Science and Google Scholar databases as well as the VOSviewer software for a deeper analysis. Although 39 related articles were identified, they are not specifically linked to the subject of Project Management methodology. Considering this significant gap, a conceptual framework has been proposed by combining some constructs of Supply Chain 4.0 with the ten knowledge areas of the PMBOK - Project Management Body of Knowledge framework. This conceptual framework is herein named Supply Chain Project Management 4.0 – SCPM 4.0. Although this conceptual framework is not based on empirical research, it brings a relevant contribution to both researchers and practitioners, since it is a unique approach concerning Project Management for supply chains in the Industry 4.0 age. Future empirical studies are needed to validate and improve the conceptual framework herein presented. This paper is novel, considering that it addresses a significant knowledge gap linked to Project Management for supply chains in the context of Industry 4.0. Moreover, it brings practical guidance for practitioners involved in programs and projects of Industry 4.0’s initiatives in supply chains. Notwithstanding, this article helps researchers on the deployments of future researches regarding Project Management in the Industry and Supply Chain 4.0 areas.

Suggested Citation

  • Guilherme F. Frederico, 2021. "Project Management for Supply Chains 4.0: A conceptual framework proposal based on PMBOK methodology," Operations Management Research, Springer, vol. 14(3), pages 434-450, December.
  • Handle: RePEc:spr:opmare:v:14:y:2021:i:3:d:10.1007_s12063-021-00204-0
    DOI: 10.1007/s12063-021-00204-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12063-021-00204-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12063-021-00204-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Gang & Gunasekaran, Angappa & Ngai, Eric W.T. & Papadopoulos, Thanos, 2016. "Big data analytics in logistics and supply chain management: Certain investigations for research and applications," International Journal of Production Economics, Elsevier, vol. 176(C), pages 98-110.
    2. Joseph T. Catanio & Gary Armstrong & Joanne Tucker, 2013. "The Effects of Project Management Certification on the Triple Constraint," International Journal of Information Technology Project Management (IJITPM), IGI Global, vol. 4(4), pages 93-111, October.
    3. Yongxin Liao & Fernando Deschamps & Eduardo de Freitas Rocha Loures & Luiz Felipe Pierin Ramos, 2017. "Past, present and future of Industry 4.0 - a systematic literature review and research agenda proposal," International Journal of Production Research, Taylor & Francis Journals, vol. 55(12), pages 3609-3629, June.
    4. Alexandre Moeuf & Robert Pellerin & Samir Lamouri & Simon Tamayo-Giraldo & Rodolphe Barbaray, 2018. "The industrial management of SMEs in the era of Industry 4.0," International Journal of Production Research, Taylor & Francis Journals, vol. 56(3), pages 1118-1136, February.
    5. Gunasekaran, Angappa & Papadopoulos, Thanos & Dubey, Rameshwar & Wamba, Samuel Fosso & Childe, Stephen J. & Hazen, Benjamin & Akter, Shahriar, 2017. "Big data and predictive analytics for supply chain and organizational performance," Journal of Business Research, Elsevier, vol. 70(C), pages 308-317.
    6. Alexandre Dolgui & Dmitry Ivanov & Suresh P. Sethi & Boris Sokolov, 2019. "Scheduling in production, supply chain and Industry 4.0 systems by optimal control: fundamentals, state-of-the-art and applications," International Journal of Production Research, Taylor & Francis Journals, vol. 57(2), pages 411-432, January.
    7. Danny Samson, 2020. "Operations/supply chain management in a new world context," Operations Management Research, Springer, vol. 13(1), pages 1-3, June.
    8. Jian-Jun Wang & Negin Sasanipoor & Meng-Meng Wang, 2018. "How PMBOK standard and partnership quality influence IT outsourcing success: An investigation of the mediated moderation effects," Journal of Global Information Technology Management, Taylor & Francis Journals, vol. 21(4), pages 282-300, October.
    9. Guilherme Francisco Frederico & Jose Arturo Garza-Reyes & Anil Kumar & Vikas Kumar, 2020. "Performance measurement for supply chains in the Industry 4.0 era: a balanced scorecard approach," International Journal of Productivity and Performance Management, Emerald Group Publishing Limited, vol. 70(4), pages 789-807, May.
    10. Faisal Iddris, 2018. "Digital Supply Chain: Survey of the Literature," International Journal of Business Research and Management (IJBRM), Computer Science Journals (CSC Journals), vol. 9(1), pages 47-61, June.
    11. Ercan Oztemel & Samet Gursev, 2020. "Literature review of Industry 4.0 and related technologies," Journal of Intelligent Manufacturing, Springer, vol. 31(1), pages 127-182, January.
    12. Kuan Chung Lin & Joseph Z. Shyu & Kun Ding, 2017. "A Cross-Strait Comparison of Innovation Policy under Industry 4.0 and Sustainability Development Transition," Sustainability, MDPI, vol. 9(5), pages 1-17, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Biman Darshana Hettiarachchi & Stefan Seuring & Marcus Brandenburg, 2022. "Industry 4.0-driven operations and supply chains for the circular economy: a bibliometric analysis," Operations Management Research, Springer, vol. 15(3), pages 858-878, December.
    2. Farida M. Issatayeva & Gulnara M. Aubakirova & Aliya D. Maussymbayeva & Lyussiya I. Togaibayeva & Valery V. Biryukov & Elena Vechkinzova, 2023. "Fuel and Energy Complex of Kazakhstan: Geological and Economic Assessment of Enterprises in the Context of Digital Transformation," Energies, MDPI, vol. 16(16), pages 1-23, August.
    3. Guilherme Luz Tortorella & Flavio S. Fogliatto & Michel J. Anzanello & Alejandro Mac Cawley Vergara & Roberto Vassolo & Jose Arturo Garza-Reyes, 2023. "Modeling the impact of industry 4.0 base technologies on the development of organizational learning capabilities," Operations Management Research, Springer, vol. 16(3), pages 1091-1104, September.
    4. Andrea Ferrari & Giulio Mangano & Anna Corinna Cagliano & Alberto De Marco, 2023. "4.0 technologies in city logistics: an empirical investigation of contextual factors," Operations Management Research, Springer, vol. 16(1), pages 345-362, March.
    5. Duong An & Duy Tran Le Anh & Huong Le Thi Cam & Rajkishore Nayak & Majo George & Loan Bui Thi Cam & Nhu-Y Ngoc Hoang & Duy Tan Nguyen & Huy Truong Quang, 2024. "Navigating global supply networks: a strategic framework for resilience in the apparel industry," Operations Management Research, Springer, vol. 17(2), pages 523-543, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bag, Surajit & Gupta, Shivam & Kumar, Sameer, 2021. "Industry 4.0 adoption and 10R advance manufacturing capabilities for sustainable development," International Journal of Production Economics, Elsevier, vol. 231(C).
    2. Sundarakani, Balan & Ajaykumar, Aneesh & Gunasekaran, Angappa, 2021. "Big data driven supply chain design and applications for blockchain: An action research using case study approach," Omega, Elsevier, vol. 102(C).
    3. Gillani, Fatima & Chatha, Kamran Ali & Sadiq Jajja, Muhammad Shakeel & Farooq, Sami, 2020. "Implementation of digital manufacturing technologies: Antecedents and consequences," International Journal of Production Economics, Elsevier, vol. 229(C).
    4. Sony, Michael & Naik, Subhash, 2020. "Industry 4.0 integration with socio-technical systems theory: A systematic review and proposed theoretical model," Technology in Society, Elsevier, vol. 61(C).
    5. Christoph March & Ina Schieferdecker, 2021. "Technological Sovereignty as Ability, Not Autarky," CESifo Working Paper Series 9139, CESifo.
    6. Anhang Chen & Huiqin Zhang & Yuxiang Zhang & Junwei Zhao, 2024. "Manufacturers’ digital transformation under carbon cap-and-trade policy: investment strategy and environmental impact," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-14, December.
    7. Li, Ying & Dai, Jing & Cui, Li, 2020. "The impact of digital technologies on economic and environmental performance in the context of industry 4.0: A moderated mediation model," International Journal of Production Economics, Elsevier, vol. 229(C).
    8. Özköse, Hakan & Güney, Gül, 2023. "The effects of industry 4.0 on productivity: A scientific mapping study," Technology in Society, Elsevier, vol. 75(C).
    9. Bai, Chunguang & Dallasega, Patrick & Orzes, Guido & Sarkis, Joseph, 2020. "Industry 4.0 technologies assessment: A sustainability perspective," International Journal of Production Economics, Elsevier, vol. 229(C).
    10. Roßmann, Bernhard & Canzaniello, Angelo & von der Gracht, Heiko & Hartmann, Evi, 2018. "The future and social impact of Big Data Analytics in Supply Chain Management: Results from a Delphi study," Technological Forecasting and Social Change, Elsevier, vol. 130(C), pages 135-149.
    11. Abirami Raja Santhi & Padmakumar Muthuswamy, 2022. "Pandemic, War, Natural Calamities, and Sustainability: Industry 4.0 Technologies to Overcome Traditional and Contemporary Supply Chain Challenges," Logistics, MDPI, vol. 6(4), pages 1-32, November.
    12. Dubey, Rameshwar & Gunasekaran, Angappa & Childe, Stephen J. & Papadopoulos, Thanos & Luo, Zongwei & Wamba, Samuel Fosso & Roubaud, David, 2019. "Can big data and predictive analytics improve social and environmental sustainability?," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 534-545.
    13. Badr Bentalha, 2020. "Big-Data and Service Supply chain management: Challenges and opportunities [Big-Data et Service Supply chain management: Challenges et opportunités]," Post-Print hal-02680861, HAL.
    14. Biman Darshana Hettiarachchi & Stefan Seuring & Marcus Brandenburg, 2022. "Industry 4.0-driven operations and supply chains for the circular economy: a bibliometric analysis," Operations Management Research, Springer, vol. 15(3), pages 858-878, December.
    15. Brinch, Morten & Gunasekaran, Angappa & Fosso Wamba, Samuel, 2021. "Firm-level capabilities towards big data value creation," Journal of Business Research, Elsevier, vol. 131(C), pages 539-548.
    16. Aljumah, Ahmad Ibrahim & Nuseir, Mohammed T. & Alam, Md. Mahmudul, 2021. "Traditional Marketing Analytics, Big Data Analytics, Big Data System Quality and the Success of New Product Development," OSF Preprints 9auec, Center for Open Science.
    17. Sumona Mukhuty & Arvind Upadhyay & Holly Rothwell, 2022. "Strategic sustainable development of Industry 4.0 through the lens of social responsibility: The role of human resource practices," Business Strategy and the Environment, Wiley Blackwell, vol. 31(5), pages 2068-2081, July.
    18. Chatterjee, Sheshadri & Chaudhuri, Ranjan & Gupta, Shivam & Sivarajah, Uthayasankar & Bag, Surajit, 2023. "Assessing the impact of big data analytics on decision-making processes, forecasting, and performance of a firm," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
    19. Alok Raj & Anand Jeyaraj, 2023. "Antecedents and consequents of industry 4.0 adoption using technology, organization and environment (TOE) framework: A meta-analysis," Annals of Operations Research, Springer, vol. 322(1), pages 101-124, March.
    20. Vaibhav S. Narwane & Rakesh D. Raut & Sachin Kumar Mangla & Manoj Dora & Balkrishna E. Narkhede, 2023. "Risks to Big Data Analytics and Blockchain Technology Adoption in Supply Chains," Annals of Operations Research, Springer, vol. 327(1), pages 339-374, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:opmare:v:14:y:2021:i:3:d:10.1007_s12063-021-00204-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.