IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i8p4212-d533336.html
   My bibliography  Save this article

Relative Importance Analysis of Safety Climate Evaluation Factors Using Analytical Hierarchical Process (AHP)

Author

Listed:
  • Hyunjin Lim

    (Department of Architectural Engineering, Kyung Hee University, Yongin-si 17104, Korea)

  • Sunkuk Kim

    (Department of Architectural Engineering, Kyung Hee University, Yongin-si 17104, Korea)

  • Yonggu Kim

    (Department of Architectural Engineering, Kyung Hee University, Yongin-si 17104, Korea)

  • Seunghyun Son

    (Department of Architectural Engineering, Kyung Hee University, Yongin-si 17104, Korea)

Abstract

Various studies have confirmed that the increasing quality of safety climate has a positive influence on reducing the occurrence of accidents. The quality of safety climate is comprehensively affected in three domains: management, site, and enterprise. At the company level, it is challenging to manage all areas at a high level due to limited managerial resources. Therefore, it is necessary to establish a strategy that improves the safety climate step by step. For the efficient execution of the strategy, it is necessary to analyze the relative importance of each evaluation factor of the safety climate and allocate managerial resources accordingly. Therefore, this study aims to analyze the relative importance of safety climate evaluation factors using the analytical hierarchical process (AHP) technique. For this study, AHP questionnaire and analysis are conducted, and the relative priorities of safety climate evaluation factors are derived. As a result, (E) workers’ safety priority and risk non-acceptance is the most important dimension among seven dimensions as the weight is 0.1900. In addition, (E1) compliance with safety regulations, even if the process is tight, is the most important one between items as the weight 0.6663. The results of this study will be used as basic data for institutional improvement and policy making for a high-quality safety climate at construction sites.

Suggested Citation

  • Hyunjin Lim & Sunkuk Kim & Yonggu Kim & Seunghyun Son, 2021. "Relative Importance Analysis of Safety Climate Evaluation Factors Using Analytical Hierarchical Process (AHP)," Sustainability, MDPI, vol. 13(8), pages 1-14, April.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:8:p:4212-:d:533336
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/8/4212/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/8/4212/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ting-Kwei Wang & Qian Zhang & Heap-Yih Chong & Xiangyu Wang, 2017. "Integrated Supplier Selection Framework in a Resilient Construction Supply Chain: An Approach via Analytic Hierarchy Process (AHP) and Grey Relational Analysis (GRA)," Sustainability, MDPI, vol. 9(2), pages 1-26, February.
    2. Seyed Morteza Hatefi & Jolanta Tamošaitienė, 2018. "Construction Projects Assessment Based on the Sustainable Development Criteria by an Integrated Fuzzy AHP and Improved GRA Model," Sustainability, MDPI, vol. 10(4), pages 1-14, March.
    3. Thomas L. Saaty, 1994. "How to Make a Decision: The Analytic Hierarchy Process," Interfaces, INFORMS, vol. 24(6), pages 19-43, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ramesh Allipour Birgani & Amirhossein Takian & Abolghasem Djazayery & Ali Kianirad & Hamed Pouraram, 2022. "Climate Change and Food Security Prioritizing Indices: Applying Analytical Hierarchy Process (AHP) and Social Network Analysis (SNA)," Sustainability, MDPI, vol. 14(14), pages 1-17, July.
    2. Ziyang Wang & Peiji Shi & Xuebin Zhang & Huali Tong & Weiping Zhang & Yue Liu, 2021. "Research on Landscape Pattern Construction and Ecological Restoration of Jiuquan City Based on Ecological Security Evaluation," Sustainability, MDPI, vol. 13(10), pages 1-20, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bhatta, Arun & Bigsby, Hugh R. & Cullen, Ross, 2011. "Alternative to Comprehensive Ecosystem Services Markets: The Contribution of Forest-Related Programs in New Zealand," 2011 Conference, August 25-26, 2011, Nelson, New Zealand 115350, New Zealand Agricultural and Resource Economics Society.
    2. Daniel Schatz & Rabih Bashroush, 0. "Economic valuation for information security investment: a systematic literature review," Information Systems Frontiers, Springer, vol. 0, pages 1-24.
    3. Sahar Validi & Arijit Bhattacharya & P. J. Byrne, 2020. "Sustainable distribution system design: a two-phase DoE-guided meta-heuristic solution approach for a three-echelon bi-objective AHP-integrated location-routing model," Annals of Operations Research, Springer, vol. 290(1), pages 191-222, July.
    4. Chandratilake, S.R. & Dias, W.P.S., 2013. "Sustainability rating systems for buildings: Comparisons and correlations," Energy, Elsevier, vol. 59(C), pages 22-28.
    5. Antonio Zavala-Alcívar & María-José Verdecho & Juan-José Alfaro-Saiz, 2020. "A Conceptual Framework to Manage Resilience and Increase Sustainability in the Supply Chain," Sustainability, MDPI, vol. 12(16), pages 1-38, August.
    6. Certa, Antonella & Hopps, Fabrizio & Inghilleri, Roberta & La Fata, Concetta Manuela, 2017. "A Dempster-Shafer Theory-based approach to the Failure Mode, Effects and Criticality Analysis (FMECA) under epistemic uncertainty: application to the propulsion system of a fishing vessel," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 69-79.
    7. Bertomeu, M. & Romero, C., 2001. "Managing forest biodiversity: a zero-one goal programming approach," Agricultural Systems, Elsevier, vol. 68(3), pages 197-213, June.
    8. Ormerod, R.J., 2014. "Critical rationalism in practice: Strategies to manage subjectivity in OR investigations," European Journal of Operational Research, Elsevier, vol. 235(3), pages 784-797.
    9. Carayannis, Elias G. & Goletsis, Yorgos & Grigoroudis, Evangelos, 2018. "Composite innovation metrics: MCDA and the Quadruple Innovation Helix framework," Technological Forecasting and Social Change, Elsevier, vol. 131(C), pages 4-17.
    10. Sunita Guru & Jitendra Nenavani & Vipul Patel & Nityesh Bhatt, 2020. "Ranking of perceived risks in online shopping," DECISION: Official Journal of the Indian Institute of Management Calcutta, Springer;Indian Institute of Management Calcutta, vol. 47(2), pages 137-152, June.
    11. Rimvydas Labanauskis & Aurelija Kasparavičiūtė & Vida Davidavičienė & Dovilė Deltuvienė, 2018. "Towards quality assurance of the study process using the Multi-Criteria Decision-Making Method," Entrepreneurship and Sustainability Issues, VsI Entrepreneurship and Sustainability Center, vol. 6(2), pages 799-819, December.
    12. Yusuf Ersoy & Ali Tehci, 2023. "Relationship marketing orientation in healthcare organisations with the AHP method," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 33(1), pages 35-45.
    13. Ali Yalcin & Fikri Bulut, 2007. "Landslide susceptibility mapping using GIS and digital photogrammetric techniques: a case study from Ardesen (NE-Turkey)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 41(1), pages 201-226, April.
    14. Maureen S. Golan & Laura H. Jernegan & Igor Linkov, 2020. "Trends and applications of resilience analytics in supply chain modeling: systematic literature review in the context of the COVID-19 pandemic," Environment Systems and Decisions, Springer, vol. 40(2), pages 222-243, June.
    15. Dianfa Wu & Zhiping Yang & Ningling Wang & Chengzhou Li & Yongping Yang, 2018. "An Integrated Multi-Criteria Decision Making Model and AHP Weighting Uncertainty Analysis for Sustainability Assessment of Coal-Fired Power Units," Sustainability, MDPI, vol. 10(6), pages 1-27, May.
    16. Ormerod, Richard J. & Ulrich, Werner, 2013. "Operational research and ethics: A literature review," European Journal of Operational Research, Elsevier, vol. 228(2), pages 291-307.
    17. Mirza Sikalo & Almira Arnaut-Berilo & Adela Delalic, 2023. "A Combined AHP-PROMETHEE Approach for Portfolio Performance Comparison," IJFS, MDPI, vol. 11(1), pages 1-15, March.
    18. Önder Çağlayan & Murat Aymelek, 2024. "An Integrated Multi-Criteria Decision Support Model for Sustainable Ship Queuing Policy Application via Vessel Traffic Service (VTS)," Sustainability, MDPI, vol. 16(11), pages 1-33, May.
    19. Daji Ergu & Gang Kou, 2012. "Questionnaire design improvement and missing item scores estimation for rapid and efficient decision making," Annals of Operations Research, Springer, vol. 197(1), pages 5-23, August.
    20. Król-Badziak, Aleksandra & Kozyra, Jerzy & Matyka, Mariusz, 2020. "Efficiency Of Deep Fertilizer Placement In Maize In Terms Of Sustainable Development Criteria," Roczniki (Annals), Polish Association of Agricultural Economists and Agribusiness - Stowarzyszenie Ekonomistow Rolnictwa e Agrobiznesu (SERiA), vol. 2020(4).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:8:p:4212-:d:533336. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.