IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i7p4013-d529964.html
   My bibliography  Save this article

Sediment Level Prediction of a Combined Sewer System Using Spatial Features

Author

Listed:
  • Marc Ribalta

    (Eurecat, Technology Centre of Catalonia, 08005 Barcelona, Spain
    Department of Computer Science and Industrial Engineering, University of Lleida, 25003 Lleida, Spain)

  • Carles Mateu

    (Department of Computer Science and Industrial Engineering, University of Lleida, 25003 Lleida, Spain)

  • Ramon Bejar

    (Department of Computer Science and Industrial Engineering, University of Lleida, 25003 Lleida, Spain)

  • Edgar Rubión

    (Eurecat, Technology Centre of Catalonia, 08005 Barcelona, Spain)

  • Lluís Echeverria

    (Eurecat, Technology Centre of Catalonia, 08005 Barcelona, Spain)

  • Francisco Javier Varela Alegre

    (Barcelona Cicle de l’Aigua, 08038 Barcelona, Spain)

  • Lluís Corominas

    (ICRA, Catalan Institute for Water Research, 17003 Girona, Spain)

Abstract

The prediction of sediment levels in combined sewer system (CSS) would result in enormous savings in resources for their maintenance as a reduced number of inspections would be needed. In this paper, we benchmark different machine learning (ML) methodologies to improve the maintenance schedules of the sewerage and reduce the number of cleanings using historical sediment level and inspection data of the combined sewer system in the city of Barcelona. Two ML methodologies involve the use of spatial features for sediment prediction at critical sections of the sewer, where the cost of maintenance is high because of the dangerous access; one uses a regression model to predict the sediment level of a section, and the other one a binary classification model to identify whether or not a section needs cleaning. The last ML methodology is a short-term forecast of the possible sediment level in future days to improve the ability of operators to react and solve an imminent sediment level increase. Our study concludes with three different models. The spatial and short-term regression methodologies accomplished the best results with Artificial Neural Networks (ANN) with 0.76 and 0.61 R2 scores, respectively. The classification methodology resulted in a Gradient Boosting (GB) model with an accuracy score of 0.88 and an area under the curve (AUC) of 0.909.

Suggested Citation

  • Marc Ribalta & Carles Mateu & Ramon Bejar & Edgar Rubión & Lluís Echeverria & Francisco Javier Varela Alegre & Lluís Corominas, 2021. "Sediment Level Prediction of a Combined Sewer System Using Spatial Features," Sustainability, MDPI, vol. 13(7), pages 1-15, April.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:7:p:4013-:d:529964
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/7/4013/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/7/4013/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alfredo Aloi & Borja Alonso & Juan Benavente & Rubén Cordera & Eneko Echániz & Felipe González & Claudio Ladisa & Raquel Lezama-Romanelli & Álvaro López-Parra & Vittorio Mazzei & Lucía Perrucci & Darí, 2020. "Effects of the COVID-19 Lockdown on Urban Mobility: Empirical Evidence from the City of Santander (Spain)," Sustainability, MDPI, vol. 12(9), pages 1-18, May.
    2. Goodwin, Paul & Lawton, Richard, 1999. "On the asymmetry of the symmetric MAPE," International Journal of Forecasting, Elsevier, vol. 15(4), pages 405-408, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jeonghun Lee & Chan Young Park & Seungwon Baek & Seung H. Han & Sungmin Yun, 2021. "Risk-Based Prioritization of Sewer Pipe Inspection from Infrastructure Asset Management Perspective," Sustainability, MDPI, vol. 13(13), pages 1-21, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fang, Da & Guo, Yan, 2022. "Flow of goods to the shock of COVID-19 and toll-free highway policy: Evidence from logistics data in China," Research in Transportation Economics, Elsevier, vol. 93(C).
    2. Veronika Harantová & Ambróz Hájnik & Alica Kalašová & Tomasz Figlus, 2022. "The Effect of the COVID-19 Pandemic on Traffic Flow Characteristics, Emissions Production and Fuel Consumption at a Selected Intersection in Slovakia," Energies, MDPI, vol. 15(6), pages 1-21, March.
    3. Monika Zimmermann & Florian Ziel, 2024. "Efficient mid-term forecasting of hourly electricity load using generalized additive models," Papers 2405.17070, arXiv.org.
    4. Wei Sun & Yujun He & Hong Chang, 2015. "Forecasting Fossil Fuel Energy Consumption for Power Generation Using QHSA-Based LSSVM Model," Energies, MDPI, vol. 8(2), pages 1-21, January.
    5. Philippe St-Aubin & Bruno Agard, 2022. "Precision and Reliability of Forecasts Performance Metrics," Forecasting, MDPI, vol. 4(4), pages 1-22, October.
    6. Fildes, Robert & Goodwin, Paul & Lawrence, Michael & Nikolopoulos, Konstantinos, 2009. "Effective forecasting and judgmental adjustments: an empirical evaluation and strategies for improvement in supply-chain planning," International Journal of Forecasting, Elsevier, vol. 25(1), pages 3-23.
    7. Crone, Sven F. & Hibon, Michèle & Nikolopoulos, Konstantinos, 2011. "Advances in forecasting with neural networks? Empirical evidence from the NN3 competition on time series prediction," International Journal of Forecasting, Elsevier, vol. 27(3), pages 635-660.
    8. Borsati, Mattia & Nocera, Silvio & Percoco, Marco, 2022. "Questioning the spatial association between the initial spread of COVID-19 and transit usage in Italy," Research in Transportation Economics, Elsevier, vol. 95(C).
    9. Vinay Singh & Bhasker Choubey & Stephan Sauer, 2024. "Liquidity forecasting at corporate and subsidiary levels using machine learning," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 31(3), September.
    10. Lessmann, Stefan & Voß, Stefan, 2017. "Car resale price forecasting: The impact of regression method, private information, and heterogeneity on forecast accuracy," International Journal of Forecasting, Elsevier, vol. 33(4), pages 864-877.
    11. Maria Tzitiridou-Chatzopoulou & Georgia Zournatzidou & Michael Kourakos, 2024. "Predicting Future Birth Rates with the Use of an Adaptive Machine Learning Algorithm: A Forecasting Experiment for Scotland," IJERPH, MDPI, vol. 21(7), pages 1-13, June.
    12. Nanath, Krishnadas & Balasubramanian, Sreejith & Shukla, Vinaya & Islam, Nazrul & Kaitheri, Supriya, 2022. "Developing a mental health index using a machine learning approach: Assessing the impact of mobility and lockdown during the COVID-19 pandemic," Technological Forecasting and Social Change, Elsevier, vol. 178(C).
    13. Mehmet Kayakuş & Mustafa Terzioğlu & Dilşad Erdoğan & Selin Aygen Zetter & Onder Kabas & Georgiana Moiceanu, 2023. "European Union 2030 Carbon Emission Target: The Case of Turkey," Sustainability, MDPI, vol. 15(17), pages 1-23, August.
    14. Bunn, Derek W. & Taylor, James W., 2001. "Setting accuracy targets for short-term judgemental sales forecasting," International Journal of Forecasting, Elsevier, vol. 17(2), pages 159-169.
    15. Spiliotis, Evangelos & Assimakopoulos, Vassilios & Nikolopoulos, Konstantinos, 2019. "Forecasting with a hybrid method utilizing data smoothing, a variation of the Theta method and shrinkage of seasonal factors," International Journal of Production Economics, Elsevier, vol. 209(C), pages 92-102.
    16. Konečný Vladimír & Zuzaniak Martin & Brídziková Mária & Jaśkiewicz Marek, 2023. "Regional Differences in the Impact of the COVID-19 Pandemic on the Demand for Bus Transport in the Slovak Republic," LOGI – Scientific Journal on Transport and Logistics, Sciendo, vol. 14(1), pages 146-157, January.
    17. De Borger, Bruno & Proost, Stef, 2022. "Covid-19 and optimal urban transport policy," Transportation Research Part A: Policy and Practice, Elsevier, vol. 163(C), pages 20-42.
    18. Filipe Teixeira, João & Silva, Cecília & Moura e Sá, Frederico, 2022. "The role of bike sharing during the coronavirus pandemic: An analysis of the mobility patterns and perceptions of Lisbon’s GIRA users," Transportation Research Part A: Policy and Practice, Elsevier, vol. 159(C), pages 17-34.
    19. Syntetos, Aris A. & Nikolopoulos, Konstantinos & Boylan, John E., 2010. "Judging the judges through accuracy-implication metrics: The case of inventory forecasting," International Journal of Forecasting, Elsevier, vol. 26(1), pages 134-143, January.
    20. Balazs Pager & Zsuzsanna Zsibókb, 2020. "Regionalizing National-Level Growth Projections in the Visegrad Countries – The Issue Of Ex-Post Rescaling," Romanian Journal of Regional Science, Romanian Regional Science Association, vol. 14(1), pages 1-24, JUNE.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:7:p:4013-:d:529964. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.