IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i7p3930-d528976.html
   My bibliography  Save this article

Investigating Approaches of Integrating BIM, IoT, and Facility Management for Renovating Existing Buildings: A Review

Author

Listed:
  • Abubaker Basheer Abdalwhab Altohami

    (Department of Civil Engineering, Faculty of Engendering, University Putra Malaysia, Serdang, Selangor 43400, Malaysia)

  • Nuzul Azam Haron

    (Department of Civil Engineering, Faculty of Engendering, University Putra Malaysia, Serdang, Selangor 43400, Malaysia)

  • Aidi Hizami Ales@Alias

    (Department of Civil Engineering, Faculty of Engendering, University Putra Malaysia, Serdang, Selangor 43400, Malaysia)

  • Teik Hua Law

    (Department of Civil Engineering, Faculty of Engendering, University Putra Malaysia, Serdang, Selangor 43400, Malaysia)

Abstract

The importance of building information is highly attached to the ability of conventional storing to provide professional analysis. The Internet of Things (IoT) and smart devices offer a vast amount of live data stored in heterogeneous repositories, and hence the need for smart methodologies to facilitate IoT–BIM integration is very crucial. The first step to better integrating IoT and Building Information Modeling (BIM) can be performed by implementing the Service-Oriented-Architecture (SOA) to combining software and other services by replacing the sematic information that was failed to display elements of indoor conditions. The other development is to create link that able to update static models towards real-time models using SOA approach. The existing approach relies on one-way interaction; however, developing two-way communication to mimic human cognitive has become very crucial. The high-tech approach requires highly involving Cloud computations to better connect IoT devices throughout Internet infrastructure. This approach is based on the integration of Building Information Modeling (BIM) with real-time data from IoT devices aiming at improving construction and operational efficiencies and to provide high-fidelity BIM models for numerous applications. The paper discusses challenges, limitations, and barriers that face BIM–IoT integration and simultaneously solves interoperability issues and Cloud computing. The paper provides a comprehensive review that explores and identifies common emerging areas of application and common design patterns of the traditional BIM-IoT integration followed by devising better methodologies to integrate IoT in BIM.

Suggested Citation

  • Abubaker Basheer Abdalwhab Altohami & Nuzul Azam Haron & Aidi Hizami Ales@Alias & Teik Hua Law, 2021. "Investigating Approaches of Integrating BIM, IoT, and Facility Management for Renovating Existing Buildings: A Review," Sustainability, MDPI, vol. 13(7), pages 1-30, April.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:7:p:3930-:d:528976
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/7/3930/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/7/3930/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sara Saberi & Mahtab Kouhizadeh & Joseph Sarkis & Lejia Shen, 2019. "Blockchain technology and its relationships to sustainable supply chain management," International Journal of Production Research, Taylor & Francis Journals, vol. 57(7), pages 2117-2135, April.
    2. Rongyue Zheng & Jianlin Jiang & Xiaohan Hao & Wei Ren & Feng Xiong & Yi Ren, 2019. "bcBIM: A Blockchain-Based Big Data Model for BIM Modification Audit and Provenance in Mobile Cloud," Mathematical Problems in Engineering, Hindawi, vol. 2019, pages 1-13, March.
    3. Ghaffarianhoseini, Ali & Tookey, John & Ghaffarianhoseini, Amirhosein & Naismith, Nicola & Azhar, Salman & Efimova, Olia & Raahemifar, Kaamran, 2017. "Building Information Modelling (BIM) uptake: Clear benefits, understanding its implementation, risks and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1046-1053.
    4. Shabanzadeh, Morteza & Sheikh-El-Eslami, Mohammad-Kazem & Haghifam, Mahmoud-Reza, 2016. "A medium-term coalition-forming model of heterogeneous DERs for a commercial virtual power plant," Applied Energy, Elsevier, vol. 169(C), pages 663-681.
    5. Jingxin Gao & Xiaoyang Zhong & Weiguang Cai & Hong Ren & Tengfei Huo & Xia Wang & Zhifu Mi, 2019. "Dilution effect of the building area on energy intensity in urban residential buildings," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    6. Erik Hofmann, 2017. "Big data and supply chain decisions: the impact of volume, variety and velocity properties on the bullwhip effect," International Journal of Production Research, Taylor & Francis Journals, vol. 55(17), pages 5108-5126, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nawal Abdunasseer Hmidah & Nuzul Azam Haron & Aidi Hizami Alias & Teik Hua Law & Abubaker Basheer Abdalwhab Altohami & Raja Ahmad Azmeer Raja Ahmad Effendi, 2022. "The Role of the Interface and Interface Management in the Optimization of BIM Multi-Model Applications: A Review," Sustainability, MDPI, vol. 14(3), pages 1-29, February.
    2. Jan Růžička & Jakub Veselka & Zdeněk Rudovský & Stanislav Vitásek & Petr Hájek, 2022. "BIM and Automation in Complex Building Assessment," Sustainability, MDPI, vol. 14(4), pages 1-20, February.
    3. Tingchen Fang & Yiming Zhao & Jian Gong & Feiliang Wang & Jian Yang, 2021. "Investigation on Maintenance Technology of Large-Scale Public Venues Based on BIM Technology," Sustainability, MDPI, vol. 13(14), pages 1-18, July.
    4. Fabrizio Banfi & Raffaella Brumana & Graziano Salvalai & Mattia Previtali, 2022. "Digital Twin and Cloud BIM-XR Platform Development: From Scan-to-BIM-to-DT Process to a 4D Multi-User Live App to Improve Building Comfort, Efficiency and Costs," Energies, MDPI, vol. 15(12), pages 1-26, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antonello Cammarano & Vincenzo Varriale & Francesca Michelino & Mauro Caputo, 2023. "Blockchain as enabling factor for implementing RFID and IoT technologies in VMI: a simulation on the Parmigiano Reggiano supply chain," Operations Management Research, Springer, vol. 16(2), pages 726-754, June.
    2. Bai, Chunguang & Zhu, Qingyun & Sarkis, Joseph, 2021. "Joint blockchain service vendor-platform selection using social network relationships: A multi-provider multi-user decision perspective," International Journal of Production Economics, Elsevier, vol. 238(C).
    3. Vincenzo Varriale & Antonello Cammarano & Francesca Michelino & Mauro Caputo, 2021. "Sustainable Supply Chains with Blockchain, IoT and RFID: A Simulation on Order Management," Sustainability, MDPI, vol. 13(11), pages 1-23, June.
    4. Wang, Binni & Wang, Pong & Tu, Yiliu, 2021. "Customer satisfaction service match and service quality-based blockchain cloud manufacturing," International Journal of Production Economics, Elsevier, vol. 240(C).
    5. Yu Cao & Cong Xu & Syahrul Nizam Kamaruzzaman & Nur Mardhiyah Aziz, 2022. "A Systematic Review of Green Building Development in China: Advantages, Challenges and Future Directions," Sustainability, MDPI, vol. 14(19), pages 1-29, September.
    6. Ulpan Tokkozhina & Ana Lucia Martins & Joao C. Ferreira, 2023. "Multi-tier supply chain behavior with blockchain technology: evidence from a frozen fish supply chain," Operations Management Research, Springer, vol. 16(3), pages 1562-1576, September.
    7. Su, Dan & Zhang, Lijun & Peng, Hua & Saeidi, Parvaneh & Tirkolaee, Erfan Babaee, 2023. "Technical challenges of blockchain technology for sustainable manufacturing paradigm in Industry 4.0 era using a fuzzy decision support system," Technological Forecasting and Social Change, Elsevier, vol. 188(C).
    8. Maurizio Massaro & Francesca Dal Mas & Charbel Jose Chiappetta Jabbour & Carlo Bagnoli, 2020. "Crypto‐economy and new sustainable business models: Reflections and projections using a case study analysis," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 27(5), pages 2150-2160, September.
    9. Yuemei Ding & Dequan Zheng & Xiaoyu Niu, 2023. "Collaborative Green Innovation of Livestock Product Three-Level Supply Chain Traceability System: A Value Co-Creation Perspective," Sustainability, MDPI, vol. 16(1), pages 1-28, December.
    10. Liu Jiaguo & Zhang Huimin & Zhao Huida, 2021. "Blockchain Technology Investment and Sharing Strategy of Port Supply Chain Under Competitive Environment," Journal of Systems Science and Information, De Gruyter, vol. 9(3), pages 280-309, June.
    11. Giuseppe Varavallo & Giuseppe Caragnano & Fabrizio Bertone & Luca Vernetti-Prot & Olivier Terzo, 2022. "Traceability Platform Based on Green Blockchain: An Application Case Study in Dairy Supply Chain," Sustainability, MDPI, vol. 14(6), pages 1-14, March.
    12. Wang, Jiaxin & Zhao, Mu & Huang, Xiang & Song, Zilong & Sun, Di, 2024. "Supply chain diffusion mechanisms for AI applications: A perspective on audit pricing," International Review of Financial Analysis, Elsevier, vol. 93(C).
    13. Büttgen, Marion & al.,, 2021. "Blockchain in Service Management and Service Research - Developing a Research Agenda and Managerial Implications," SMR - Journal of Service Management Research, Nomos Verlagsgesellschaft mbH & Co. KG, vol. 5(2), pages 71-102.
    14. Wang, Chengfu & Chen, Xiangfeng & Xu, Xun & Jin, Wei, 2023. "Financing and operating strategies for blockchain technology-driven accounts receivable chains," European Journal of Operational Research, Elsevier, vol. 304(3), pages 1279-1295.
    15. Mansoureh Beheshti Nejad & Seyed Mahmoud Zanjirchi & Seyed Mojtaba Hosseini Bamakan & Negar Jalilian, 2024. "Blockchain Adoption in Operations Management: A Systematic Literature Review of 14 Years of Research," Annals of Data Science, Springer, vol. 11(4), pages 1361-1389, August.
    16. Davies, Jennifer & Sharifi, Hossein & Lyons, Andrew & Forster, Rick & Elsayed, Omar Khaled Shokry Mohamed, 2024. "Non-fungible tokens: The missing ingredient for sustainable supply chains in the metaverse age?," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 182(C).
    17. Mahmoona Khalil & Kausar Fiaz Khawaja & Muddassar Sarfraz, 2022. "The adoption of blockchain technology in the financial sector during the era of fourth industrial revolution: a moderated mediated model," Quality & Quantity: International Journal of Methodology, Springer, vol. 56(4), pages 2435-2452, August.
    18. José Ángel Aranda & Norena Martin-Dorta & Ferran Naya & Julián Conesa-Pastor & Manuel Contero, 2020. "Sustainability and Interoperability: An Economic Study on BIM Implementation by a Small Civil Engineering Firm," Sustainability, MDPI, vol. 12(22), pages 1-16, November.
    19. Mona Haji & Laoucine Kerbache & Mahaboob Muhammad & Tareq Al-Ansari, 2020. "Roles of Technology in Improving Perishable Food Supply Chains," Logistics, MDPI, vol. 4(4), pages 1-24, December.
    20. Dong, Ciwei & Huang, Qianzhi & Pan, Yuqing & Ng, Chi To & Liu, Renjun, 2023. "Logistics outsourcing: Effects of greenwashing and blockchain technology," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 170(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:7:p:3930-:d:528976. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.